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Abstract—Automated Storage (AS) are designed to store 

and retrieve products in specific locations within 

manufacturing, warehouses, institutions, and others. These 

AS involve the usage of robots to move the stored items in 

and out of the warehouse. However, a challenge for AS 

systems is to solve the path planning for finding shortest 

path in a minimum amount of time while avoiding collisions 

with other robots or static obstacles. Fuzzy Logic systems 

are widely used in several application areas requiring 

mimicking the human decision logic under uncertainty. In 

this paper, we proposed an Automated Storage (AS) robot 

navigation by using three Fuzzy subsystems combined 

together to ensure path planning with obstacle avoidance. 

These three fuzzy subsystems are: Reach Target, Avoid 

Obstacle, and Escape Cul-De-sac. Therefore, fuzzy rules are 

employed along with the corresponding defuzzication 

process to control left and right wheel movement steps of the 

robot. These systems achieve reaching the goal (using the 

first subsystem) while avoiding different obstacles on the 

way (using the second subsystem), even the ones that form a 

trap (using the third subsystem). These three systems will be 

used for path planning and following. The overall model 

was simulated using C# code. The initial results showed the 

effectiveness of the model in different scenarios: namely no 

obstacles, static ones, traps, and dynamic obstacles. The 

path length was comparable to that of traditional shortest 

path methods such as Dijkstra and A*. The results were also 

compared to a newer method called APSO. The system’s 

response was quick due to the fewer needed instructions and 

reduced memory storage needs. All this was done assuming 

a constant speed for robots and dynamic obstacles.   

 

Keywords—automated storage, fuzzy logic, path planning, 

obstacle avoidance, robotics  

 

I. INTRODUCTION 

Automated Storage (AS) retrieval systems are 

currently widely used worldwide for many companies, 

and are considered to be a part of the industry 4.0 

standard. These AS involve usage of robots to move the 

stored items in and out of the warehouse. A challenge for 

AS is to solve the path planning for finding shortest path 

in a minimum amount of time while avoiding collisions 

with other robots or static obstacles. There are several 

Shortest-path algorithms which are used, such as Dijkstra 
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and A*. Dijkstra’s algorithm is a famous algorithm that is 

used for finding the shortest path, from starting node to 

target node in a weighted graph. This algorithm makes a 

tree of the shortest path from the starting node to all other 

nodes in the graph. It makes use of weights of the edges 

for finding the path that minimizes the total distance from 

the source node to all other nodes. The A* algorithm is 

just like Dijkstra’s algorithm. The only difference is that 

A* algorithm tries to look for a better path by using a 

heuristic function H which gives priority to nodes that are 

supposed to be better than others while Dijkstra’s 

algorithm just explores all possible paths [1].  

Fuzzy logic is also used in robotics to solve the 

navigation problems without initial calculations of the 

whole path. Fuzzy logic is a simple way of thinking that 

mimics human being’s decisions when uncertainty is 

involved. Fuzzy logic is widely used in a range of 

applications, such as control systems, image processing, 

natural language processing, medical diagnosis, and 

artificial intelligence. 

In our previous works, an enhanced A* algorithm was 

used to handle the robot’s navigation in AS system. The 

first work [2] suggested a simple and efficient algorithm 

to find the path planning with collision-free using an 

enhanced A* algorithm to find the shortest path from a 

source node to a destination node, with two heuristic 

functions H1 and H2. In our second work [3] the addition 

of priority path in a multiple robot navigation problem. 

In this paper, we present a different approach to the 

navigation problem in AS by using Fuzzy Logic control. 

This new approach does not need exact locations of all 

obstacles in the map, but just the adjacent ones by using 

the available distance sensors. Our model includes three 

fuzzy systems combined together: Reach Target, Avoid 

Obstacle, and Escape Cul-De-Sac. These subsystems will 

be explained in details in a following section. 

The rest of this paper is organized as follows. In the 

following section, we briefly survey the relevant related 

work. Following comes Fuzzy Logic definition along 

with system model requirements. The proposed fuzzy 

model with its subsystems is described next. Next, 

applications to AS systems with simulation discussions 

are presented. Finally, we conclude the paper and present 

possible future work. 
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II. RELATED WORK 

In robotics navigation, the goal is to reach the target 

following the shortest path, while avoiding obstacles on 

the way including concave ones (also called cul-de-sac). 

Obstacles can be either static or dynamic. There are many 

available solutions using fuzzy logic systems. These 

systems can be a single fuzzy inference system that 

includes all situations, or a separate dual system with one 

activated at a time: one for reaching target and one for 

avoiding obstacles. There is also a triple fuzzy inference 

system: one for reaching target, one for avoiding 

obstacles, and one for escaping concave obstacles by 

wall-following behavior. A fuzzy system can also be used 

as is or with reinforcement learning that helps optimizing 

fuzzy rules after a learning phase. In all cases, fuzzy 

membership sets for inputs/outputs and fuzzy rules 

should be well defined in order to make a successful 

robotics navigation. 

The work done in [4] defines a single fuzzy system 

with reinforcement learning. The system is applied on a 

Khepera robot and shows its power and flexibility in 

solving robotic issues in detecting a target in a changing 

physical environment. 

The system in [5] also defines a single fuzzy system 

with reinforcement learning. The system needs sufficient 

training and also fine training using the reinforcement 

learning to determine the membership functions for the 

input and output variables. After that, the mobile robot is 

able to perform collision-free navigation. The system is 

applied in a virtual environment. 

The paper work in [6] presents a dual fuzzy controller 

with reinforcement learning. The first controller is to 

follow target and avoid obstacles, while the second 

controller is using a wall-following behavior to escape 

concave traps. A simulated robot is tested in a 

complicated unknown environment for training on 

obstacle-avoidance and target-approaching. 

A single fuzzy system is used in [7] to apply both 

obstacle avoidance and target seeking behaviors. For 

demonstrations of the effectiveness of the proposed fuzzy 

logic based controller, simulations using a mobile robot 

simulator are performed, to move a robot from a given 

current position to a desired goal position in various 

environments. 

The work in [8] presents a dual fuzzy controller: one 

for angular velocity and one for linear velocity of the 

robot. A multi agent model simulation for robot 

navigation in dynamic environments is done. The robot 

only used ultrasonic sensors in addition to the suggested 

fuzzy system in order to achieve its goal without collision.  

A dual fuzzy system is used in [9] for robot navigation. 

The first fuzzy system is to move to the goal, and the 

second is to avoid obstacles. The work is implemented on 

both simulation and real-time. The real-time 

implementation used Khepera II mini robot. Both 

implementations gave good performances.  

An elaborated fuzzy system in [10] is presented using 

four separate fuzzy controllers in a hierarchical manner: 

reach target, avoid obstacle, escape trap with right wall 

follow, and escape trap with left wall follow. The system 

is applied to a Khepera robot, and used in a re-active 

manner without an environment map. Because of the 

missing map, the system is not able to find an optimized 

path.  

A dual system fuzzy logic controller is defined in [11]. 

The two systems are target reach and obstacle avoidance. 

It is using the wireless control approach to control a 

swarm of wheeled mobile robots Scout-II in a warehouse 

with static and dynamic obstacles. The environment is 

dynamic and unknown. Smooth paths were generated 

using this method.  

The work in [12] introduced dual system fuzzy logic 

controller with reinforcement learning (Q-learning). The 

two systems are goal seeking and wall following. The 

effectiveness of the Q-leaning optimization algorithm is 

verified by simulation.  

Another work in [13] discusses a fuzzy controller with 

dual system: orientation and obstacle avoidance. The 

work is applied in simulation and actual robot 

implementation for unknown indoor environment with 

different obstacle course. Both tests show good results.  

The paper in [14] shows a single fuzzy controller 

system for robot navigation in unknown environment. 

The fuzzy logic controller takes the input from the laser 

sensor of the robot and gives the change in the angular 

velocity as output to the robot to avoid the obstacle. 

Simulink is used to model the system in a simulation 

environment. 

The research conducted in [15] explains a single fuzzy 

logic system to navigate mobile robot in an unknown 

dynamic environment. The fuzzy controller was used to 

assess the positions and select better steps that decrease 

the overall path length, together with avoiding collision 

with obstacles. It also keeps the robot away from local 

minimums. In order to analyze the performance of the 

proposed algorithm in the path planning’s field, a 

simulation framework was designed using Matlab.  

A paper in [16] described a single fuzzy logic system 

for robot navigation in real environments using landmark 

detection. A mobile robot was used to move along the 

hallways inside a building.  

Another work in [17] explains a single fuzzy logic 

system to navigate in an unknown environment with-out 

hitting obstacles or other robots. The simulations and 

tests on actual robots have demonstrated that the system 

works correctly.  

A dual system fuzzy logic controller is introduced in 

[18]. The dual system contains goal reaching and obstacle 

avoidance. High level global planning and Low-level 

reactive control were used. In high-level planning, the 

robot motion is determined and a minimum-cost path is 

followed to reach the target. In low-level reactive control, 

the robot uses current sensory information to change the 

motion direction reacting to unforeseen obstacles.  

The authors in [19] presented three separate fuzzy 

controllers for mobile robot navigation in unknown 

environment using reinforcement learning. The three 

controllers are: goal seeking, wall following, and obstacle 

avoidance. The process of learning based on Q-learning 

consists to improve the mobile robot performance. 

International Journal of Mechanical Engineering and Robotics Research Vol. 12, No. 5, September 2023

314



Simulation results on real robot show the system’s 

effectiveness.  

The work done in [20] shows a dual fuzzy controller 

system with reinforcement learning. The two systems are 

goal seeking and obstacle avoidance. The suggested 

algorithm is used for driving E-puck robot in an obstacle 

filled environment.  

Another work done in [21] displays a single fuzzy 

controller system for mobile robot navigation to avoid 

dynamic and static obstacles. The navigation method is 

inspired from the Vector Field Histogram method. It is 

using a reactive approach for mobile robot control. 

Testing is done only in simulation environment.  

Furthermore, the publication in [22] also explains a 

single fuzzy controller system for mobile robot 

navigation, but in static environments. The robot can 

reach its target in the shortest path with obstacle 

avoidance. The efficiency of this method is verified in 

simulation and experimental results. The MATLAB 

toolbox is used for software implementation.  

Nadour et al. [23] presents a dual fuzzy controller 

system for mobile robot navigation based optical flow 

approaches. The two separate fuzzy systems are goal 

seeking and obstacle avoidance. The controller uses video 

acquisition and image processing algorithm. The 

proposed approach is simulated in 3D environment using 

VRML library.  

The paper [24] presents a single fuzzy controller sys-

tem for autonomous mobile robot navigation. The 

controller is designed on Matlab/Simulink environment. 

Simulations are presented to verify the performance of 

the fuzzy logic controller, which proves to be good.  

Another single fuzzy controller system is shown in [25] 

for robot navigation with detecting and avoiding static 

and dynamic obstacles. Simulink is used to present 

simulation results.  

Also, another single adaptive fuzzy controller system 

is shown in [26] for omnidirectional mobile robots with 

trajectory tracking. Simulation works demonstrating the 

validity of the proposed design are also presented.  

On the other hand, the work suggested in [27] uses 

evolutionary programming method and reactive control 

for a non-holonomic mobile robot with a dual fuzzy 

controller system with reinforcement learning. The two 

systems are reach endpoint and obstacle avoidance. 

Simulation is done and shows that the designed fuzzy 

controller achieves effectively any movement control of 

the vehicle to its goal without any collision.  

Another work in [28] suggests a single fuzzy system to 

control autonomous robot with obstacle deviation. A 

virtual simulation is done using MATLAB and the results 

are satisfactory. However, actual implementation shows 

weaknesses in obstacle detection for ultra-sonic sensors 

outside angles of actuation.  

In the research [29], two fuzzy methods were 

implemented and compared together for optimum path 

planning of mobile robot in unknown static and dynamic 

environments. The proposed algorithms are successfully 

verified through both simulations and real-time 

experiments in the different environments. One of the 

fuzzy methods performed better than the other.  

The authors in [30] explain fuzzy logic controllers 

design for omnidirectional mobile robot navigation 

(Robotino). The design includes three separate fuzzy 

controller systems: one for linear velocity, one for 

angular velocity, and one for obstacle avoidance. 

Simulation and experimental tests are performed for one, 

two and three obstacles, and show that the robot has good 

performance and efficiency to navigate in an unstructured 

and unknown obstacles environment.  

The work done in [31] presents a single fuzzy 

controller system for navigation of humanoid robot in 

obstacle prone zone. The controller is tested on a NAO 

humanoid robot in V-REP simulation platform and also 

in a real experimental platform under laboratory 

conditions. The humanoid robot was successful in 

avoiding the obstacles and reach the target location in an 

optimized path. 

Another work in [32] is based on four fuzzy controller 

systems: go to target, avoid obstacle, wall follow, and 

wander. The experimental results demonstrate that the 

proposed robot navigation system performs better than 

the conventional approach in terms of consistent motion 

and safe navigation.  

An intelligent mobile manipulator navigation is pro-

posed in [33] using dual fuzzy controller system: obstacle 

avoidance and join virtual target. A simulation is done 

and simulation results illustrate the efficiency of the 

proposed controller.  

A work is done in [34] to address trajectory planning 

and navigation control problems for a mobile robot. An 

adaptive PSO (Particle Swarm Optimization) motion 

algorithm is developed using a penalty-based method-

ology. Simulation results are presented through the 

MATLAB environment in addition to real-time 

experiments conducted in a similar workspace. The 

results showed improvements over other techniques.  

Another work in [35] designed an autonomous 

navigation robot platform. Based on the particle filtering 

mapping algorithm and using 2D LiDAR and an inertial 

measurement unit sensors, simultaneous localization, 

mapping, and autonomous navigation were realized. The 

experimental results showed that the platform effectively 

mapped the unknown environment and realized 

autonomous navigation through the proposed control 

algorithm. 

III. DEFINITIONS AND MODEL REQUIREMENTS 

A. Fuzzy Logic Definition 

In mathematical logic, Boolean algebra is a branch of 

algebra and differs from elementary algebra in two ways. 

First, the values of variables are Booleans, usually 

denoted by 1 and 0, but in elementary algebra the values 

of variables are numbers. Second, Boolean algebra uses 

logical operators such as conjunction (and), disjunction 

(or), and negation (not). Elementary algebra, on the other 

hand, uses arithmetic operators such as addition, 

multiplication, subtraction, and division. Boolean algebra 

is thus a formal way of describing logical operations in 
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the same way that elementary algebra describes 

numerical operations.  

Fuzzy logic is a computational approach based on 

“degree of truth” rather than the usual “true or false” (1 or 

0) Boolean logic on which modern computers are based. 

The idea of fuzzy logic was first developed in the 1960s 

by Lotfi Zadeh at the University of California, Berkeley. 

A fuzzy model or set is a mathematical means of 

representing fuzzy and imprecise information. These 

models are able to perceive, represent, manipulate, 

interpret and use ambiguous and uncertain data and 

information. Fuzzy logic can be thought of as the way 

thinking really works. Binary or Boolean logic is just a 

special case of that. Fuzzy logic uses a degree of truth 

ranging from 0 to 1 as a mathematical model of 

vagueness [36]. 

The fuzzy set as is a class of objects with a continuous 

of grade of membership. The transition from membership 

to non-membership in a subset of reference set is gradual 

rather than abrupt. An example of a fuzzy set 

membership function is shown in Fig. 1. The definition of 

“fit” membership function depends on the “weight” input. 

As the weight increases, fit gradually goes up from zero 

to one then goes back to zero.  

 

Figure 1. Sample fuzzy membership function. 

To generalize, using the same axis “weight” input, and 

with three membership functions: underweight, fit, and 

overweight. We keep the same definition for “fit” 

function. We define “underweight” function starting from 

1 for zero weight, going down to zero as weight increases. 

We define “overweight” function starting from zero for 

zero weight, going up to 1 as weight increases. The 

overall fuzzy set with its 3 membership functions is 

shown in Fig. 2. 

 

Figure 2. Sample fuzzy membership set with 3 functions. 

Fuzzy Systems are composed of three parts [37]:  

- Fuzzification: Fuzzify all input values into fuzzy 

membership functions. The fuzzification 

procedure maps the crisp input values to the 

fuzzy terms with membership values between 0 

and 1.  

- Fuzzy Rules Evaluation or inference mechanism: 

Execute all applicable rules in the rule base to 

compute the fuzzy output functions. This 

mechanism is responsible for decision-making in 

the fuzzy controller using approximate reasoning. 

The rule base is essential for the controller, 

which stores the rules directing the input and 

output relationship of the proposed controller.  

- -Defuzzification: The defuzzification procedure 

maps the fuzzy output from the fuzzy rule’s 

evaluation to a crisp output. For this, several 

methods are available such as Center of Gravity 

and Mean of Maxima. A basic fuzzy system is 

shown in Fig. 3. 

 

Figure 3. Basic fuzzy system. 

B. Model Requirements and Assumptions 

The model environment for solving a path planning 

can be reduced to an undirected connected graph G = V, 

E, L, where V is the set of nodes, E is set of edges, and L 

represents the effective length between two nodes. An 

example of the work environment is shown in Fig. 4. The 

requirements and assumptions are as follows: 

• The path width between two nodes can only 

accommodate one mobile robot at a time.  

• The running speed is constant and same for all 

mobile robots under normal operation condition. It 

is assumed to be 1m/s.  

• The block’s distance is 1 meter. The robot needs 1 

second to move for one block.  

• The robot needs 1 second to rotate by 90 degrees 

to any direction.  

• Mobile robots’ direction is considered at initial 

starting point.  

• The path taken into consideration can be single 

way from start to target.  

• The main robot only knows the location of other 

robots when it arrives to any neighboring cell. 

 

Figure 4. Environment grid used. 

IV. PROPOSED FUZZY MODEL 

The proposed fuzzy model consists of three main parts, 

namely the fuzzy system 1: Reach Goal, the fuzzy system 

2: Avoid Obstacle, and the fuzzy system 3: Escape Cul-
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De-Sac. At the beginning, the Reach Goal fuzzy system is 

activated. It tries to guide the robot towards its target until 

success or reaching an obstacle on the way. In the latter 

situation, the control is given to the Avoid Obstacle fuzzy 

system which tries to change the path in order to deviate 

from the faced obstacle. This system stays active until the 

path is clear, and there-fore returning to the initial system. 

In case the path is not clear, and there is no way to 

deviate from the obstacle without hitting another one, 

then the Escape Cul-De-Sac fuzzy system is activated. 

This system tries to get around all the obstacles until the 

path is clear, returning to the previous fuzzy system. The 

following flowchart in Fig. 5 shows the overall workflow 

with the different fuzzy system parts interacting together. 

 

Figure 5. Proposed fuzzy model. 

The three fuzzy systems share the same inputs/outputs, 

with the second and third system having extra inputs. All 

take into consideration the starting or current point, and 

the goal point. By working on two-dimensional axes x 

and y, we use the difference delta(x) and delta(y) as 

inputs. 

DisX = delta(x) = current(x) - goal(x) 

DisY = delta(y) = current(y) - goal(y) 

The inputs DisX/DisY are defined on a fuzzy set with 

three membership values: Zero, Positive, Negative. Zero 

means it is on the goal. It is a singleton. Positive means 

that the goal is far but in the same robot’s direction. 

Negative means that the goal is far but in the opposite of 

robot’s direction. Fig. 6 shows the corresponding fuzzy 

set with the three membership values, including one 

singleton. 

 

Figure 6. Fuzzy set for inputs DisX/DisY (distance to goal in 

X/Y directions). 

Another input is the Robot’s Direction (Dir). It defines 

one of the four possible current directions of the robot: 0-

Left, 1-Up, 2-Right, 3-Down. Fig. 7 shows the 

corresponding fuzzy set and the four singletons. As seen 

in the figure, the membership values are singletons. 

 

Figure 7. Fuzzy set for input Dir (current robot’s direction). 

The outputs of the system are MovX and MovY. 

MovX is defined as the movement of the robot in the X 

direction, while MovY is defined as the movement of the 

robot in the Y direction. The outputs MovX/MovY are 

defined on a fuzzy set with three membership values: 

Zero, Forward, backward. Zero means that the there is no 

movement on the corresponding axis. Forward means 

there is movement on the same direction of the robot. 

Backward means there is movement on the opposite 

direction of the robot. Fig. 8 shows the corresponding 

fuzzy set for the output movement in both x/y directions. 

Another system’s output is Rot. Rot is defined as the 

rotation of the robot. Its fuzzy set contains three 

membership values: Zero, Left, Right. Zero means that 

there is no rotation. Right means that the robot will rotate 

to its right. Left means that the robot will rotate to its left. 

Fig. 9 shows the corresponding fuzzy set for the rotation 

with three membership values. 

The three fuzzy system parts are described in detail as 

follows. 

 

Figure 8. Fuzzy set for outputs MovX/MovY  
(robot’s movement in X/Y directions). 
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Figure 9. Fuzzy set for output Rot (robot’s rotation). 

A. Fuzzy System 1: Reach Goal 

The reach goal system is simply trying to approach 

from target until it is reached.  

For each iteration, the system checks the above in-puts 

(namely DisX/DisY/Dir), then applies the fuzzy model 

three parts: fuzzification, inference rules, then 

defuzzification. The outcome will be the new robot’s 

move or rotation (MovX/MovY/Rot). This move is 

checked for validity. If it is valid, that is there is no 

obstacle is on the way, then it is carried out, otherwise the 

system switches to Fuzzy System 2: Avoid Obstacle. The 

system will stop when the robot reaches the target.  

A few sample inference rules for the fuzzy system 1 

are shown next.  

If DisX>0 and Dir=Right then MovX=Forward  

If DisX>0 and Dir=(Left/Up) then Rot=Right  

If DisX>0 and Dir=Down then Rot=Left  

The system’s algorithm is depicted in Algorithm 1. 

 

Algorithm 1 Fuzzy System 1: Reach Goal 

1. Select the Start node V and the Goal node G. 

2. Make current node i=V, Dist(i)=0, Dist is the traveled 

distance so far from V.  

Direction=initial direction of robot located in V 

(right/left/up/down). 

3. Loop from step 4 to 9 to reach goal G. 

4. Check if i=G, then exit loop and declare success. 

5. Get distance from i to  G in both directions x & y:  

DisX = x[G] – x[i]   

DisY = y[G] – y[i] 

6. Call Fuzzy Model according to the chosen method: 

Center of Gravity or Mean of Maxima. 

7. Check new position for obstacles.  

a. If there is no obstacle, advance to new location or 

direction. i = new location. 

b. If there is an obstacle, then exit algorithm and 

activate Fuzzy System 2: Avoid Obstacle.  

8. End of Algorithm. 

B. Fuzzy System 2: Avoid Obstacle 

The avoid obstacle system is trying to avoid the 

detected obstacle on the robot’s next move. Similarly, to 

the fuzzy system 1, it also takes into consideration the 

starting or current point, and the goal point. But it adds 

the difference between the current robot’s location and 

the impeding obstacle.  

ObX = Obstacle(x) - current(x)  

ObY = Obstacle(y) - current(y)  

The inputs ObX/ObY are defined on a fuzzy set with 

three membership values: Zero, Positive, Negative. The 

membership values are singletons: 0, +1, −1. Zero means 

that the obstacle is on the same level of X/Y axis as the 

robot. Positive means that the obstacle is on the X/Y axis 

as the robot plus one. Positive means that the obstacle is 

on the X/Y axis as the robot minus one. The following 

Fig. 10 shows the corresponding fuzzy set.  

 

Figure 10. Fuzzy set for inputs ObX/ObY  
(distance to obstacle in X/Y directions). 

For each iteration, the system checks the above 

distances, then applies the fuzzy model three parts: 

fuzzification, inference rules, then defuzzification. The 

outcome will be the new robot’s move. This move is 

checked for validity. If it is valid, that is no obstacle is on 

the way, then it is carried out, otherwise the system 

switches to Fuzzy System 3: Escape Cul-De-Sac. The 

system will switch back to Fuzzy System 1 (Reach Target) 

when the obstacle is no longer a threat.  

A few sample inference rules for the fuzzy system 2 

are shown next.  

If DisX>0,ObY=0,ObX=1,Dir=R,DisY>=0 then Rot=L  

If DisX>0,ObY=0,ObX=1,Dir=R,DisY<0 then Rot=R  

If DisX>0,ObY=0,ObX=1,Dir=U then MovY=F  

The system’s algorithm is depicted in Algorithm 2. 

 

Algorithm 2 Fuzzy System 2: Avoid Obstacle 

1. For current node i, goal node G, and the adjacent 

Obstacle on the path. 

2. Get distance from i to  G in both directions x & y:  

DisX = x[G] – x[i]   

DisY = y[G] – y[i] 

3. Get distance from i to Obstacle in both directions x & 

y:  

ObX = x[Obstacle] - x[i]    

ObY = y[Obstacle] - y[i] 

4. Call Fuzzy Model according to the chosen method: 

Center of Gravity or Mean of Maxima. 

5. Check new position for obstacles.  

a. If there is no obstacle, advance to new location or 

direction. i = new location. 

b. If there is an obstacle, then exit algorithm and 

activate Fuzzy System 3: Escape Cul-De-Sac.  

6. Repeat steps 2 to 5 until Obstacle is not visible. 

7. Return to Fuzzy System 1: Reach Goal. 

8. End of Algorithm. 

C.
 

Fuzzy System 3: Escape Cul-De-Sac
 

The escape cul-de-sac is trying to get out of the trap 

obstacles in the next few moves, then get back to the 

reach target system. It takes into consideration the 

starting or current point, and the goal point. It also takes 
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into consideration the difference between the current 

robot’s location and the obstacle detected previously in 

Avoid Obstacle system.  

ObPX = PreviousObstacle(x) - current(x)  

ObPY = PreviousObstacle(y) - current(y)  

Furthermore, it checks the difference between the 

current robot’s location and the new obstacle detected 

while trying to avoid the first obstacle.  

ObX = Obstacle(x) - current(x)  

ObY = Obstacle(y) - current(y)  

For each iteration, the system checks the above 

distances, then applies the fuzzy model three parts: 

fuzzification, inference rules, then defuzzification. The 

outcome will be the new robot’s move. This move is 

carried out and repeated until the robot is no longer 

trapped. The system will switch back to Fuzzy System 1 

(Reach Target) in that case.  

The system’s algorithm is depicted in Algorithm 3. 

 

Algorithm 3 Fuzzy System 3: Escape Cul-De-Sac 

1. For current node i, goal node G, and the adjacent 

Obstacle and previous obstacle PrevObs on the path. 

2. Get distance from i to  G in both directions x & y:  

DisX = x[G] – x[i]   

DisY = y[G] – y[i] 

3. Get distance from i to Obstacle in both directions x & 

y:  

ObX = x[Obstacle] - x[i]    

ObY = y[Obstacle] - y[i] 

4. Get distance from i to PrevObs in both directions x 

& y:  

ObPX = x[PrevObs] - x[i]    

ObPY = y[PrevObs] - y[i] 

5. Call Fuzzy Model according to the chosen method: 

Center of Gravity or Mean of Maxima. 

6. Advance to new position or direction. i = new 

location. 

7. Repeat steps 2 to 8 until both Obstacle and PrevObs 

are not visible. 

8. Return to Fuzzy System 1: Reach Goal. 

9. End of Algorithm. 

 

Figure 11. Block diagram for fuzzy input/output module. 

A block digram for the input/output module is shown 

in the next Fig. 11. As seen in the figure, all inputs and 

outputs for the three sub systems are listed. The first set 

of inputs (DisX/DisY/Dir) is used in all sub systems. 

ObX/ObX are used in the last two only. ObPX/ObPY are 

only used in Escape Cul-De-Sac system only.  

V. EXPERIMENTS AND DISCUSSION 

Our proposed system was implemented as a simulation 

and applied to Automated Storage and Retrieval Systems 

(ASRS). To verify the effectiveness of the proposed 

algorithm, extensive simulations for a range of scenarios 

for automated storage are carried out. The developed 

program was written in C# language and run on Window 

10 Operating System.  

A. Application to AS: Scenario 1 - No Obstacles 

The first experiment was conducted by having no 

obstacles. Two simulations were conducted. In both 

simulations, the starting point is node 9 and the goal is 

node 31. The simulation results are shown in Fig. 12, 

where circles indicate source and goal, squares indicate 

obstacles, and the arrows indicate the followed path. For 

the simulations, Center of Gravity defuzzification and 

Mean of Maxima defuzzification were implemented with 

the initial robot’s direction to the right. The main robot 

changed direction at positions 14 and 30 to reach target. 

Only the Fuzzy System 1 (Reach Goal) was active during 

all the path. Table I summarizes the position with respect 

to time for the robot with ten steps time and only one 

active fuzzy system.  

B. Application to AS: Scenario 2 -Static Obstacles 

The second experiment was conducted by having three 

static obstacles at locations 5, 13, and 21. Two 

simulations were conducted. In both simulations, the 

starting point is node 9 and the goal is node 31. The 

simulation results are shown in Fig. 13. For the 

simulations, Center of Gravity defuzzification and Mean 

of Maxima defuzzification were implemented with the 

initial robot’s direction to the right. In the Fuzzy model, 

the main robot changed direction at positions 12 to avoid 

obstacles, then at position 28 to reach target. The fuzzy 

system 2 (Avoid Obstacles) was activated on nodes 12, 

20, 28. The Fuzzy System 1 (Reach Goal) was active 

during all the remainder of the path. Table II summarizes 

the position with respect to time for the robot, showing 

the active fuzzy system at that point. As seen in the table, 

two fuzzy systems were active at different times.  

 

Figure 12. Scenario 1- no obstacles. 
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TABLE I.  ROBOT’S MOVEMENTS - SCENARIO 1 

Time 
Robot’s 

Location 

Robot’s 

Direction 

0 9 Right 

1 10 Right 

2 11 Right 

3 12 Right 

4 13 Right 

5 14 Right 

6 14 Turn Up 

7 22 Up 

8 30 Up 

9 30 Turn Right 

10 31 Right 

 

 

Figure 13. Scenario 2- three static obstacles. 

TABLE II.  ROBOT’S MOVEMENTS - SCENARIO 2 

Time 
Robot’s 

Location 

Robot’s 

Direction 
Fuzzy System 

0 9 Right 1 

1 10 Right 1 

2 11 Right 1 

3 12 Right 1 

4 12 Turn Up 2 

5 20 Up 2 

6 28 Up 2 

7 28 Turn Right 1 

8 29 Right 1 

9 30 Right 1 

10 31 Right 1 

 

C. Application to AS: Scenario 3 –Cul-De-Sac 

The third experiment was conducted by having five 

static obstacles forming a Cul-De-Sac at locations 4, 5, 14, 

20, and 21. Two simulations were conducted. In both 

simulations, the starting point is node 9 and the goal is 

node 31. The simulation results are shown in Fig. 14. For 

the simulations, Center of Gravity de-fuzzification and 

Mean of Maxima defuzzification were implemented with 

the initial robot’s direction to the right. In Fuzzy model, 

the main robot changed direction 180 degrees at position 

13 to escape Cul-De-Sac, went back to position 12, 

changed position up then back to position 11 then 

changed position at 11 and 27 to reach target. Fuzzy 

Systems 2 (Avoid Obstacle) and 3 (Escape Cul-De-Sac) 

were activated on nodes 13, 12, 11, 19, and 27. The 

Fuzzy System 1 (Reach Goal) was active during all the 

remainder of the path. Table III summarizes the position 

with respect to time for the robot, showing the active 

fuzzy system at that point. All three fuzzy systems were 

active at different times. 

 

Figure 14. Scenario 3- cul-de-sac. 

TABLE III.  ROBOT’S MOVEMENTS - SCENARIO 3 

Time 
Robot’s 

Location 

Robot’s 

Direction 
Fuzzy System 

0 9 Right 1 

1 10 Right 1 

2 11 Right 1 

3 12 Right 1 

4 13 Right 2 

5 13 Turn Up  3 

6 13 Turn Left  3 

7 12 Left 3 

8 12 Turn Up  3 

9 12 Turn Left  3 

10 11 Left 3 

11 11 Turn Up  3 

12 19 Up 3 

13 27 Up 2 

14 27 Turn Right 1 

15 28 Right 1 

16 29 Right 1 

17 30 Right 1 

18 31 Right 1 

 

D. Application to AS: Scenario 4 – Dynamic Obstacles 

The fourth experiment was conducted by having two 

mobile obstacles. One mobile obstacle started on point 6, 

then moved to 5 then stopped at 13. Another mobile 

obstacle started on point 36, then moved to 28 then 

stopped at 20. Two simulations were conducted. In both 

simulations, the starting point is node 9 and the goal is 

node 31. The simulation results are shown in Fig. 15. For 

the simulations, Center of Gravity defuzzification and 

Mean of Maxima defuzzification were implemented with 

the initial robot’s direction to the right. In both Fuzzy 

models, the main robot changed direction at positions 12 

then 11 to avoid obstacles, then on position 27 to reach 

target. Fuzzy System 3 (Escape Cul-De-Sac) was 

activated on nodes 12, 11, 19, 27, 28, 29. The Fuzzy 

System 1 (Reach Goal) was active during all the 

remainder of the path. Table IV summarizes the position 
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with respect to time for the robot, showing the active 

fuzzy system at that point. Only fuzzy systems 1 and 3 

were active at different times. 

 

Figure 15. Scenario 4- dynamic obstacles. 

TABLE IV.  ROBOT’S MOVEMENTS - SCENARIO 4 

Time 
Robot’s 

Location 

Robot’s 

Direction 
Fuzzy System 

0 9 Right 1 

1 10 Right 1 

2 11 Right 1 

3 12 Right 1 

4 12 Turn Up 3 

5 12 Turn Left 3 

6 11 Left 3 

7 11 Turn Up 3 

8 19 Up 3 

9 27 Up 3 

10 27 Turn Right 3 

11 28 Right 3 

12 29 Right 3 

13 30 Right 1 

14 31 Right 1 

 

TABLE V.  COMPARISON OF THE 4 SCENARIOS 

Scenario 
Obstacles  

Number 

Dynamic/ 

Static 

Obstacles 

Ideal 

Time 

Actual 

Time 

Activated 

Fuzzy 

Systems 

Scenario 1: 

No 

Obstacles 

0 None 10s 10s 1 

Scenario 2: 

Static 

Obstacles 

3 Static 10s 10s 1, 2 

Scenario 3: 

Cul-De-Sac 
5 Static 10s 18s 1, 2, 3 

Scenario 4: 

Dynamic 

Obstacles 

2 Dynamic 10s 14s 1, 3 

 

The simulated 4 scenarios are compared in the Table V. 

The used criteria include the number of obstacles, their 

type, the needed ideal time to reach the target, the actual 

spent time to reach the target using fuzzy module, and the 

activated fuzzy subsystems. All the experiments were 

successful. The first scenario was the only one to have an 

actual output equivalent to the ideal one. The reason is 

that there were no obstacles involved. The other scenarios 

lagged behind the ideal case, mainly due to the fact that 

the robot has no prior knowledge of the locations for the 

other robots. This makes the other techniques like A* or 

Dijkstra not feasible for solving the navigation problem. 

E. Comparison of our Fuzzy Model with APSO Model 

In order to compare our model with an existing work, a 

fifth experiment was conducted by having one dynamic 

obstacle and four static obstacles. The mobile obstacle 

started on point 10, then moved to 11 then stopped at 12. 

The four static obstacles were at locations 6, 14, 22, and 

30. The starting point is node 1 and the goal is at node 24. 

We compared our model with another model based on a 

technique called APSO [34]. We also assume that the 

distance between any 2 consecutive nodes is one meter, 

the robot’s speed is 1m/s, and turning one right angle (90 

degrees) will take 1 second. We got the following results:  

• Our model performed well. It finished the track in 

16 steps (seconds): 13 movements and 3 right 

angle turns. Fig. 16 shows the Fuzzy Model’s used 

path.  

• The other APSO model had a slightly better 

performance: 15 seconds instead of 16 seconds as 

in our model, so 6.67% better performance. In the 

APSO technique, the robot turned seven times 45 

degrees, moved straight 3 moves, and 6 diagonals. 

Fig. 17 shows the APSO model’s used path. 

• The reason behind the difference of performance 

is that the other model relied on moving in 

diagonals and near obstacles. Our model had a 

restriction of moving in empty nodes and turning 

at right angles only. 

• Table VI shows the comparison between the two 

models. 

TABLE VI.  COMPARISON OF THE 2 MODELS 

Scenario 
Obstacles  

Number 

Dynamic/ 

Static 

Obstacles 

Fuzzy 

Model 

Time 

APSO 

Time 

Diff. 

(%) 

Scenario 5: 

Dynamic 
and Static 

Obstacles 

5 

1 

Dynamic, 

4 Static 

16s 15s 6.67% 

 

Figure 16. Scenario 5- Using Our Fuzzy Model. 
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Figure 17. Scenario 5- Using APSO Technique. 

VI. CONCLUSION 

As a conclusion, a fuzzy model to handle robotic 

navigation in an automated storage retrieval system was 

suggested and simulated. The model contains three fuzzy 

subsystems: Reach Target, Avoid Obstacle, and Escape 

Cul-De-sac. The simulations were done using both Center 

of Gravity and Mean of Maxima for de-fuzzification. 

Both methods showed exactly the same results. 

Four scenarios were simulated and compared. One 

without obstacles, one with static obstacles, one with 

static obstacles forming a Cul-De-Sac, and one with 

dynamic obstacles. The used criteria included the number 

of obstacles, their type, the needed ideal time to reach the 

target, the actual spent time to reach the target using 

fuzzy module, the activated fuzzy sub-systems, and the 

experiment’s outcome. The results showed that the Fuzzy 

Logic System was capable of handling all the different 

scenarios with success as shown in a table. The only 

problem was that complicated scenarios caused some 

delay in order to reach the target.  

An additional scenario was created and simulated 

using our Fuzzy Model and APSO technique. The 

comparison showed almost similar results in terms of 

performance and efficiency.  

The results are promising, especially facing dynamic 

obstacles which are hard to detect using conventional 

shortest path methods with static memorized map . We 

intend to implement this system on a real robot in a real 

environment. Furthermore, reinforcement learning can be 

added in a future work to fine tune the fuzzy model sets 

and have a better adjustment to the specificities of the 

used warehouse map. 
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