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Abstract—Kinematic chain synthesis normally begins with 

the generation of a comprehensive list of candidate solutions 

followed by a time-consuming procedure for isomorph 

elimination. As a result, the search for isomorphisms in 

kinematic chains has long attracted the attention of many 

researchers. Several methods and algorithms have been 

proposed in the past. Nonetheless, the field still needs fast, 

efficient and reliable means to prevent duplications across 

kinematic chains (KC) (i.e., isomorphisms), particularly for 

configurations with a significant number of bars. Mechanical 

designers are resorting to kinematic chains and mechanisms 

with multiple bars to accomplish more complex operations 

and movements. This complicates the procedure of 

determining isomorphism. In this paper, we present a simple 

and efficient method for identifying isomorphisms in 

kinematic chains by employing a reduced graph matrix, 

which reduces the adjacency matrix into a compact matrix 

corresponding to linkages between non-binary bars while 

implicitly accounting for binary bars. The algorithm’s 

efficiency and computing complexity are assessed for a 

number of published situations, including single-joint 

kinematic chains with 8, 10, 12 bars, and three-complex 13, 

15, 28 bars, and lastly 42-bar kinematic chains. This 

comparison demonstrates the validity and effectiveness of the 

proposed method.  

Keywords—adjacency matrix, isomorphism, reduced graph 

matrix, structure synthesis 

I. INTRODUCTION

Many mechanical engineers create complicated 

machinery and devices that perform difficult jobs. The 

number of bars required grows in proportion to the 

complexity of the solution. As a result, the likelihood of 

discovering isomorphic KCs increases. Two isomorphic 

KCs correspond to the same physical KC with different 

vertices numbering. As a result, an efficient, precise, and 

systematic approach of discovering isomorphic solutions 

is required early in the design process. The designers must 

construct as many independent KCs as possible for a 

certain number of bars and degree of freedom while 

avoiding isomorphic solutions. The designer will then 

have a solid foundation from which to investigate and 

discover the best solution for the problem at hand. To 
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overcome the challenge of isomorphism identification, 

several researchers have offered numerous approaches and 

concepts. When the KC grows too complicated, including 

a large number of bars, determining all viable, non-

isomorphic solutions becomes difficult, if not impossible. 

The papers listed below address the problem of 

isomorphism identification. 

Woo [1], a pioneer in the field of isomorphism 

identification, proposed a rule to assess isomorphism 

based on the number of vertices in two graphs of the same 

degree. He suggested a vertex-to-vertex incidence matrix-

based approach for finding isomorphism in KCs. Sohn and 

Freudenstein [2] used the vertex-to-vertex incidence 

matrices' characteristic polynomials. Certain 

counterexamples were later identified, demonstrating that 

the developed approach was a required but not sufficient 

condition. Rao and Varada Raju [3] used the Hamming 

number, which is employed in digital communication 

theory. Nonetheless, their approach, too, failed to 

accurately differentiate between isomorphic KCs in some 

circumstances. Yadav et al. [4] suggested utilizing the idea 

of distance to determine the length between every two 

pairs of joints in the KC to discover isomorphisms. 

Meanwhile, Yadav et al. [5] improved on Yadav et al. [4]’s 

prior method for removing non-isomorphic planar KCs 

with simple joints. Hwang and Hwang [6] synthesized 

KCs using the contiguity matrix of contracted links as a 

representation matrix. Chu and Cao [7] introduced an 

identification approach based on the notion of the link 

adjacent chain table. This approach produced an invariant 

quantity, which made identifying isomorphisms in KCs 

easier. Using an artificial neural network technique, Kong 

[8] suggested a novel method for finding isomorphic KCs.

Rao [9, 10] synthesized F-DOF (N-2)-linked chains as the

foundation chains for synthesizing F-DOF and N-linked

chains using the Hamming number approach. Chang et al.

[11] proved that some KC configuration eigenvalues have

features that enable the eigenvectors and eigenvalues to

identify KC isomorphisms. Ding and Huang [12]

developed a strong computer program that automatically

drew the KCs of basic joints by employing the KC’s

characteristic representation code as well as the notions of

synthetic degree sequence and characteristic adjacency
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matrix. They also produced a database of kinematic chain 

atlases. For detecting unique solutions in kinematic chains, 

Lohumi et al. [13] suggested a hierarchical clustering 

approach. Rizvi et al. [14] proposed using the adjacency 

matrix to generate a unique chain identification number. 

Isomorphisms were identified using this identification 

number. Rajneesh and Sunil [15] proposed the notions of 

entropy and connection number to detect isomorphisms. 

Rai and Punjabi [16] used the binary codes generated by 

the link labeling approach to identify isomorphisms. While 

Deng et al. [17] used a molecular topological index to 

identify isomorphisms in KCs. Ding et al. [18] used the 

perimeter loops of kinematic chains to relabel the links and 

obtain a unique identification number. Using a similar 

strategy, Yang et al. [19] created planar basic joint KCs. 

Rai et al. [20] have recommended employing binary 

coding to relabel the connections in the KCs in order to 

produce a unique identification code. Tian [21] developed 

a numbering technique for finding isomorphism. Sun et al. 

[22] suggested a technique for determining isomorphism 

based on a Compound Topological Invariant (CTI) 

composed of the fourth power of the adjacency matrix and 

eigenvalues. Sun et al. [23] suggested a method for 

removing isomorphism in contract graphs after the vertex 

has been placed. Varadaraju et al. [24] presented a 

technique on the neighboring matrix that is comparable to 

the hamming number. The latter is divided into three parts. 

To determine the isomorphism, Vinjiamuri et al. [25] 

employed the distance between distinct vertices to 

compute the called net distance. Rajneech et al. [26] 

proposed an entropy-based technique for finding 

isomorphisms in multiple joint kinematic chains while 

ignoring link tolerance and joints clearance. The perimeter 

loop approach was utilized by Ding et al. [27] to identify 

isomorphism between planetary gear trains. Rongjiang 

et  al. [28] enhanced the similarity recognition technique 

and used it to create Planar KCs using P-pairs. Hollerbach 

[29] developed a successful lagrangian formulation of 

manipulator dynamics in which the number of additions 

and manipulations is proportional to the number of joints. 

Anderson et al. [30] presents for systems with n 

generalized coordinates and m independent algebraic 

constraints, the technique may accommodate the spatial 

motion of general multi-rigid-body systems with 

arbitrarily many closed loops in O(n+m) operations overall. 

Mohan et al. [31] propose a method to determine the 

independent equations of motion by using the Euler-

Lagrange equations of motion based on the system's 

kinetic and potential energies and the decoupled natural 

orthogonal complement matrices. In comparison to current 

approaches, this study proposes changing the neighboring 

matrix to the reduced graph matrix to determine 

isomorphism across kinematic chains in a relatively short 

amount of time. 

This approach works well for six- and eight-bar 

kinematic chains, as well as certain ten- and twelve-bar 

kinematic chains; nevertheless, the square of this matrix 

must be utilized to find the isomorphism of all kinematic 

chains. 

This paper is organized as follows: Section II introduces 

the reduced graph matrix and how it is derived from the 

adjacency matrix and vice versa. Section III provides three 

examples that demonstrate the usefulness of the suggested 

method. Section IV compares the suggested technique to 

other isomorphism identification methods. Finally, section 

V provides a summary of this paper. 

II. GRAPH REPRESENTATION 

A. Graph 

In this work, a graph is defined as a set of vertices 

connected by edges that form a kinematic chain. Vertices 

represent bars in the KC, while edges indicate linkages 

between bars, i.e., joints. 

The KC can be represented by a square adjacency 

matrix, as shown below: 

 𝑎𝑖𝑗 = {
1 𝑖𝑓 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖 is 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣𝑒𝑟𝑡𝑒𝑥 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

B. Reduced Graph Matrix  

As illustrated in the picture below, the n-by-n adjacency 

matrix is reduced to the m-by-m reduced graph matrix 

(RGM) by eliminating all rows and columns relating to the 

binary bars and modifying the values of aij corresponding 

to the m non-binary bars (i and j in the example below are 

non-binaries vertices). Decimals are utilized to make each 

circumstance distinct to minimize any misinterpretation 

(Fig. 1(c), Fig. 1(f) and Fig.2). 

 

Figure 1. Elements of the adjacency matrix for different types of links 

between two non-binaries vertices i and j. 

 

Figure 2. Values of aij for different situations. 

The major purpose of this technique is to build a non-

binary vertices connection matrix that holds information 

about the topological features of the original kinematic 

chain. The 𝑎𝑖𝑗  is made up of two parts: a value before the 
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comma that identifies the kind of connection between i and 

j (direct or via binary bars), and a value after the comma 

that denotes the number of binary bars in each series 

between i and j. For example, 𝑎𝑖𝑗 = 5.2 denotes a direct 

connection 𝑎𝑖𝑗 = 1 as well as a connection via two binary 

bars 𝑎𝑖𝑗 = 1 + 2 + 2 . Following the comma, the value 

𝑎𝑖𝑗 = 5.2 shows that the two binary vertices are linked in 

series. The expression 𝑎𝑖𝑗 = 10.32  denotes that the i-

vertex and j-vertex are connected by five binary vertices 

𝑎𝑖𝑗 = 2 + 2 + 2 + 2 + 2  (non-direct connection) 𝑎𝑖𝑗 =

10, three of which are in series (𝑎𝑖𝑗 = 10.3) and one in 

parallel (𝑎𝑖𝑗 = 10.32). 

The number of binary bars is specified by one or more 

“0” to make the procedure universal for any number of 

binary bars linking two non-binary bars. If the number is 

between 10 and 99, a leading “0” is used. A double “0” is 

used when the number is between 100 and 999, and so on. 

For example, 

(1) 𝑎𝑖𝑗 = 𝑘. 22  (k is either 8 or 9). The number 22 

denotes that the i- and j-vertexes are connected by four 

parallel bars (2+2). 𝑎𝑖𝑗 = 𝑘. 022  (k=44 or 45) would 

imply that the i-vertex and j-vertex are linked in series by 

twenty-two binary vertices. 

(2) If three parallel series of ten, five, and two bars link 

two non-binary vertices, the element 𝑎𝑖𝑗  is given by 𝑎𝑖𝑗 =

34.01052 . The number 34 is equivalent to 2(10+5+2). 

Take note of the leading "0," which plainly indicates the 

number 10. 

(3) When two non-binary vertices are connected by two 

parallel series of ten and one hundred bars, the element 𝑎𝑖𝑗  

is 220.00100010. 𝑎𝑖𝑗 = 220.01000100 may also be used 

to describe the same scenario. 

In summary, the presence of a leading zero in the 

fractional component of 𝑎𝑖𝑗  indicates that the following 

two consecutive numbers represent the number of binary 

bars linking vertices i and j. Two consecutive zeros denote 

that the next three digits represent the number of binary 

bars in series, and so on. The numbers of bars in a series 

following the decimal point are arranged in ascending or 

decreasing order. In this article, we choose ascending order 

(of the number of binary bars in each series) as indicated 

in the preceding example (2) (𝑎𝑖𝑗 = 34.01052). 

C. Example  

The reduced graph matrix is derived from the adjacency 

matrix of the following 8 bars KC. 

 

Figure 3. Structure representation of eight bar kinematic chain. 

The adjacency matrix of the 8 bars kinematic chain in 

Fig. 3 is as follows: 

 𝐴 =

[
 
 
 
 
 
 
 
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 1
0 0 1 0 1 0 1 0
1 1 0 0 0 1 0 0
1 1 0 0 1 0 0 0]

 
 
 
 
 
 
 

 (1) 

The 7 and 8 bars in KC of Fig. 3 are connected by two 

binary barres 1 and 2, the components 𝑎78 = 2 + 2, and 

the reduced graph matrix is formed by removing the rows 

and columns corresponding to binary barres 1 and 2 from 

the adjacent matrix. 

 𝑅𝐺𝑀 =

[
 
 
 
 
 
0 1 0 1 0 0
1 0 1 0 0 0
0 1 0 1 0 1
1 0 1 0 1 0
0 0 0 1 0 4
0 0 1 0 4 0]

 
 
 
 
 

 (2) 

The corresponding kinematic chain is: 

 

Figure 4. Kinematic chain after eliminating two binary bars. 

Then, in the new RGM connection between the two 

non-binary bars 3 and 4, remove the rows and columns 

corresponding to the binary bars 1 and 2 (in Fig. 4). 𝑎34 =
4.2 + 1 = 5.2. 

Because this KC includes four non-binary links, the 

reduced graph matrix is a 4 by 4 matrix, and it is given by: 

 𝑅𝐺𝑀 = [

0 5.2 0 1
5.2 0 1 0
0 1 0 4
1 0 4 0

] (3) 

And the corresponding kinematic chain becomes (see 

Fig. 5): 

 

Figure 5. Kinematic chain after eliminating all binary bars. 

III. PROPOSED METHOD FOR ISOMORPHISM 

IDENTIFICATION 

Every configuration has an invariant that is independent 

of the numbering of the vertices. The new matrix derived 

from the adjacency matrix allows for the identification of 
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KC isomorphisms. This matrix is the Square of the 

Reduced Graph Matrix (SRGM), resulting in what will be 

referred to as the Matrix for Isomorphism Identification 

(MII) later. 

A bijection connects the adjacency matrix to the RGM 

(for any adjacency matrix there one and only one RGM 

and vice versa). As a result, the RGM squared, called 

SRGM, is constant up to a permutation for any isomorphic 

graph (it contains the same elements but in a different 

order). Consider two isomorphic KCs with two adjacency 

matrices A and B. They are represented by RGMA and 

RGMB reduced matrices. Because the two KCs are 

isomorphic, there exists a permutation P1 such that  𝐵 =
𝑃1 × 𝐴 × 𝑃1𝑡 . Given how RGM is constructed, RGMA 

and RGMB have a similar relationship (𝑅𝐺𝑀𝐵 = 𝑃 ×
𝑅𝐺𝑀𝐴 × 𝑃𝑡. P is obtained from P1 by eliminating from P1 

the rows and columns corresponding to the binary vertices. 

As a result, 𝑆𝑅𝐺𝑀𝐵 = 𝑅𝐺𝑀𝐵2 = 𝑃 × 𝑅𝐺𝑀𝐴 × 𝑃𝑡 ×
𝑃 × 𝑅𝐺𝑀𝐴 × 𝑃𝑡 = 𝑃 × 𝑅𝐺𝑀𝐴 × 𝑅𝐺𝑀𝐴 × 𝑃𝑡 = 𝑃 ×
𝑆𝑅𝐺𝑀𝐴 × 𝑃𝑡. SRGMA and SRGMB are equal up to the 

same permutation. 

For the KC of Fig. 3, the square of the reduced graph 

matrix is given by: 

 𝑆𝑅𝐺𝑀 = [

28.04 0 9.2 0
0 28.04 0 9.2

9.2 0 17 0
0 9.2 0 17

] (4) 

The Matrix for Isomorphism Identification (MII) is 

obtained as follows: 

• Sort the row elements of the squared reduced 

graph matrix in descending or ascending order. 

• Sort the column elements of the resulting matrix 

in descending or ascending order (We will use the 

ascending order in the examples below). 

 𝑀𝐼𝐼 = [

0 0 9.2 17
0 0 9.2 17
0 0 9.2 28.04
0 0 9.2 28.04

]  (5) 

It should be noted that the configurations with six and 

eight vertices do not require the square of the contract 

adjacent matrix. It is sufficient to range the rows and 

columns of the reduced graph matrix. 

A. Conversion of an Adjacent Matrix to a Reduced 

Graph Matrix 

Follow the steps in this example Fig. 6 to generate the 

reduced graph matrix from the adjacency matrix: 

 

Figure 6. Eight bars KC. 

(1) In fact, node 3 in Fig. 7 is a virtual node (3') 

between 3 and 4. Between 1 and 3' we have a binary 

node (3) so 𝐴𝑏((1,3′) = 2.1 and between 2 and 3' 

we have a binary node (4). So 𝐴𝑏(2,3′) = 2.1 . 

Similarly, node 6 is a virtual node between 6, 7 and 

8. Between 1 and 6’ we have two binary node 6 and 

7 so 𝐴𝐵(1,6′) = 4.2  and 𝐴𝑏(2,6′) = 2.1  The 

matrix Ab defined after is the distance between the 

non-binary nodes (rows) and the nodes 3', 5 and 6'. 

 

Figure 7. Eight bars KC after reducing the series of binary bars into one 
binary bar. 

 𝐴𝑏 = [
2.1 1 4.2
2.1 1 2.1

]  (6) 

(2) Finally, add up all the values between the non-

binary vertices Fig. 8 then Fig. 9, paying careful 

attention to the figures after the comma. Before 

adding up, a shift is necessary. 

 

Figure 8. KC after transforming the series of binary bars to direct 
connections. 

 𝑅𝐺𝑀 = [
0 13.32

13.32 0
] (7) 

 

Figure 9. KC transformed to one directed connection. 

B. Reduced Graph Matrix to Adjacency Matrix 

Transformation 

It is simple to convert the reduced graph matrix to an 

adjacency matrix, as demonstrated in the steps below: 
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(1) Use the RGM to initialize the adjacency matrix A. 

Begin by looking at the decimal numbers in each 

element A(i,j), then go through the value 

following the comma one by one. If the value is 

0, the following two values represent one whole 

number. If the first two consecutive values are 0, 

the next three values represent one whole number. 

And so forth. 

(2) The number obtained in step one is the number of 

binary bars in series between non-binary bars i 

and j. 

(3) Subtract twice the number found in step 1 from 

the value of the number preceding the comma. 

Subtract this number from the value following the 

comma as well. Create as many new rows and 

new columns as the value found in step 1. Assign 

a value of 1 to the elements of the adjacency 

matrix corresponding to the non-binary bars i and 

j and the newly created binary bars. 

(4) Repeat Steps 1 through 3 until all values after the 

comma have been processed. 

(5) While the remaining value before the comma is 

different from 1 and 0, subtract 2 from this value 

and add one row and column to the adjacency 

matrix. Assign a value of 1 to the elements of the 

adjacency matrix corresponding to the non-

binary bars i and j and the newly created binary 

bars. 

Repeat the preceding procedures until you have dealt 

with all of the decimals in all of the adjacency matrix 

entries. 

The following flowchart summarizes the usage of the 

proposed method to identify isomorphism between two 

kinematic chains A and B. 

 

IV. APPLICATION OF THE PROPOSED METHOD ON VARIOUS 

KINEMATIC CHAINS 

The following are some examples of how the suggested 

approach can be used for various KCs with variable 

numbers of bars. 

a) Example 1: Eight vertices configuration 

 

Figure 10. Two isomorphic configurations with eight vertices. 

The RGM for the two KCs A and B are: 

 𝑅𝐺𝑀𝐴 = [

0 1 1 4.2
1 0 2 2
1 2 0 1

4.2 2 1 0

] (8) 

 𝑅𝐺𝑀𝐵 = [

0 2 1 1
2 0 1 2
1 1 0 4.2
1 2 4.2 0

]  (9) 

This, in turn, gives the MII matrices: 

𝑀𝐼𝐼𝐴 = [

0 1 1 2
0 1 1 2
0 1 1 4.2
0 1 1 4.2

]𝑀𝐼𝐼𝐵 = [

0 1 1 2
0 1 1 2
0 1 1 4.2
0 1 1 4.2

] (10) 

The MII matrices corresponding to KCs A and B Fig. 

10 show that they are isomorphic. In fact, B is obtained 

from A by permuting vertices 1 and 3, 7 and 4, and 

subsequently 7 and 6. 

b) Example 2: Fifteen vertices configuration 

 

Figure 11. Graph representation of fifteen bars kinematic chains. 

 

Figure 12. Fifteen KC non-isomorphic with KC of Fig. 10. 
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Figure 13. Fifteen KC isomorph with KC of Fig. 10. 

The MII of the KCs of Fig. 11, Fig. 12 and Fig. 13 are 

given by: 

 𝑀𝐼𝐼𝐴&𝐶 =

[
 
 
 
 
 
 
 
 
2 2 2 3 3 4 5 6 7
2 2 2 3 3 4 5 6 7
2 2 2 3 3 4 5 6 7
2 2 2 3 3 4 5 6 7
2 2 2 3 3 4 5 6 7
2 2 2 3 3 4 5 6 7
2 2 4 4 5 5 6 6 12
2 2 4 4 5 5 6 6 12
2 2 4 4 5 5 6 6 12]

 
 
 
 
 
 
 
 

  (11) 

 𝑀𝐼𝐼𝐵 =

[
 
 
 
 
 
 
 
 
1 2 3 3 4 4 4 6 7
1 2 3 3 4 4 4 6 7
1 2 3 3 4 4 4 6 7
1 2 3 3 4 4 4 6 7
1 2 3 3 4 4 4 6 7
1 2 3 3 4 4 4 6 7
2 2 4 4 5 5 6 6 12
2 2 4 4 5 5 6 6 12
2 2 4 4 5 5 6 6 12]

 
 
 
 
 
 
 
 

  (12) 

Because the MII for graphs A and C are equal, the two 

configurations are isomorphic. However, because the 

MIIB differ, graph B is not isomorphic to graphs A and C. 

c) Example 3: Twenty-eight vertices configuration 

 

Figure 14. twenty-eight bars kinematic chains. 

The identity matrices generated by the suggested 

approach demonstrate that the two graphs A and B in Fig. 

14 are isomorphic, as confirmed by the literature [34]. The 

identity matrices of graphs C and A, however, differ. As a 

result, graphs A and C are not isomorphic. 

 𝑀𝐼𝐼𝐴&𝐵 = [
16 × 000000000000000001111123
8 × 000000000000000001111226

] (13) 

 𝑀𝐼𝐼𝐶 =

[
 
 
 
 
 
5 × 000000000000000001111113
10 × 000000000000000001111123
2 × 000000000000000001111223
5 × 000000000000000001111226

000000000000000001111246
000000000000000001122249 ]

 
 
 
 
 

 (14) 

V. COMPARATIVE ANALYSES  

A.  Joint Sorting Code (JSC) 

The joint sorting code technique [21] starts by listing all 

of the configuration's independent cycles that form the 

cycle basis. The basic cycles in Fig. 15 are (1,2,5,3,1), 

(1,3,4,8,7,1) , and (2,6,4,3,5,2) . Then, for every two 

adjacent vertices, joint identification codes (JIC) of the 

form ABC are generated, where A denotes the joint type 

(1 for revolute joints and 2 for prismatic joints) and B and 

C represent the degrees of those two vertices. The 

fundamental cycles are [133 123 123 133] , 

[133 133 123 122 123] , and [123 123 133 123] . By 

organizing each array in ascending order and appending 

zeros to it, the kinematic chain structural matrix (KCSM) 

is formed. The arrays are then combined together. The 

(KCSM) is configuration-specific and may be used to find 

isomorphisms in kinematic chains. 

 [
123 123 133 133 0
122 123 123 133 133
123 123 123 123 133

] (15) 

This approach is simple and efficient, but it needs 

determining the graph cycle basis for the kinematic chain 

first. This is problematic for huge graphs. The technique 

suggested in this study, on the other hand, is simpler and 

does not need first identifying the cycle basis. 

 

Figure 15. Eight -bars configuration. 

B. Similarity Recognition and Isomorphism 

Identification 

The method of similarity recognition is split into two 

phases [32]. To begin, compute the adjacency matrix's 

third power and sort each row in descending order (the 

resultant matrix is known as the power vertex similarity 

PVS matrix), then rearrange the matrix in descending order 

(CPVS). Second, we employ the PVS and CPVS to 

determine the similarity of vertices [32]. 
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Application example: 

 

Figure 16. Representation of a forty-two kinematic chain. 

 

Figure 17. Second representation of a forty-two kinematic chain. 

The cubic PVS can distinguish between the two 

kinematic chains. Similarly, the proposed method in this 

paper identifies the isomorphism in approximately 4 ×
10−4𝑠  as opposed to 1.5 × 10−3𝑠  using the similarity 

recognition and isomorphism identification method [32]. 

The difference in runtime is proportional to the number of 

vertices. The difference in CPU time grows as the number 

of vertices grows. 

Note: The integer in front of the parentheses represents 

a duplicate of the value in MII. 

The proposed method 

 𝑀𝐼𝐼𝑎 =  𝑀𝐼𝐼𝑏 =

0000000000000000000000000000000011
0000000000000000000000000000111111

3(1111111111111111111111111111111111)
1111111111111111111111111111222222
1111112222222222222222222222222222
2222222222222222222222222222222222
3333333333333333446666666666666666

 (16) 

Note: The MII matrices of both configurations are 

identical. As a consequence, we can say unequivocally that 

the two configurations are isomorphic without using any 

similarity approach and with the shortest feasible 

computing time. 

C. Numbering Method for the Kinematic Chain 

Isomorphism Recognition of Planar KCs 

 

 

Figure 18. Two non-isomorph eight bars configurations. 

Tian et al. [33] published a simple method for 

numbering the vertices. This method utilizes specific rules 

based on the degree and weight of vertices, and it will be 

compared to the above configuration. 

The procedure begins by determining the following 

properties: 

𝑑𝑖: is the vertex degree. 𝑑𝑖 take the values:  

(1) 𝑑𝑖 = −1 if vertex i is binary and is linked to 

two non-binary vertices,  

(2) 𝑑𝑖 = −2 if i is a binary vertex and is linked 

to a binary and a non-binary vertex (example 

from Fig. 18 𝑑5 = 𝑑6 = 𝑑7 = 𝑑8 = −2) 

(3) di coincides with the proper vertex degree 

when i is a non-binary vertex (example, 𝑑1 =
𝑑2 = 𝑑3 = 𝑑4 = 3). 

I1Di: is the I-level relation code formed by putting the 

vertex degree ( 𝑑𝑖 ) of adjacent vertices to vertex I in 

descending order. 

Example 1: 𝐼1𝐷11,2,3,4 = 33 − 2, 𝐼1𝐷55,6,7,8 = 33 

I2Di: is the II-level relation code formed by putting in 

descending order the I1Di of the adjacent vertices to vertex 

i. 

Example 2: 𝐼2𝐷11,2,3,4 = 3333 − 233 − 2 , 

𝐼2𝐷55,6,7,8 = 33 − 233 − 2 

Si: is the relation code sum. It is the sum of the algebraic 

relation code of vertex i in each level (I1Di, I2Di). 

Example 3: 𝑆1,2,3,4 = 3 + 3 + (−2) = 4 , 𝑆5,6,7,8 =

3 + 3 = 6 

This method labels the vertices configuration based on 

the comparison of di, ImDi, and Si for each vertex in the 

two configurations (see [33]). However, in Fig. 18, the di, 

ImDi, and Si are equal for all types of vertices in both 

configurations (see examples 1,2, and 3 above), making 

labeling the vertices in both configurations impossible. As 

a result, each configuration must be labeled more than 
𝑛

2
! 

times. In this example (Fig. 18), 24 different labeling for 

each configuration implies 242 comparisons between each 

configuration’s matrices. 

By comparing the RGM for both configurations, the 

proposed method in this paper easily detects the fact that 

the two configurations are not isomorphs. 

 𝑅𝐺𝑀𝐴 = [

0 1 0 5.2
1 0 5.2 0
0 5.2 0 1

5.2 0 1 0

]  (17) 

 𝑅𝐺𝑀𝐵 = [

0 1 4.2 1
1 0 1 4.2

4.2 1 0 1
1 4.2 1 0

]  (18) 

The two configurations in Fig. 18 are not isomorphic. 

This simple example with a small number of bars 

demonstrates the superiority and efficiency of the 

proposed method, which employs the reduced graph 

matrix to identify isomorphisms in KCs. 
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D. A Method for Detecting Isomorphism in Planar 

Kinematic Chains Based on Compound Topological 

Invariants 

CTI is produced by the fourth power of the adjacency 

matrix 𝐴4 (sorting each row element in decreasing order, 

then comparing the rows and arranging them in decreasing 

order) and the eigenvalue of the configuration sorted in 

decreasing order [22]. Despite its simplicity, this approach 

cannot discover isomorphism between some basic 8-link 

graphs, as illustrated in Fig 10, since their eigenvalues 

differ according to the results obtained on MATLAB. The 

long format of eigenvalues shows the difference. 

𝑒𝐴 =

[
 
 
 
 
 
 
 
−2.281333395043705
−1.944310733422072
−1.140548094310296
−0.099890015366104
0.598633976166785
1.000000000000000
1.275163171393258
2.592285090582134 ]

 
 
 
 
 
 
 

, 𝑒𝐵 =

[
 
 
 
 
 
 
 
−2.281333395043705
−1.944310733422072
−1.140548094310296
−0.099890015366104
0.598633976166784
0.999999999999998
1.275163171393258
2.592285090582136 ]

 
 
 
 
 
 
 

  (19) 

The eigenvector was sorted for comparison. 

 𝑉𝐴 =

[
 
 
 
 
 
 
 
−0.64 −0.5 −0.4 −0.17 −0.07 −0.01 0.24 0.32
−0.52 −0.44 −0.4 −0.08 −0.04 0 0.27 0.46
−0.5 −0.41 −0.38 −0.08 0 0.16 0.4 0.48
−0.47 −0.41 −0.25 −0.04 0.1 0.25 0.4 0.5
−0.46 −0.4 −0.17 0 0.19 0.26 0.42 0.57
−0.45 −0.21 −0.11 0.09 0.24 0.3 0.44 0.59
−0.37 −0.09 0 0.18 0.25 0.37 0.44 0.63
−0.11 −0.08 0.15 0.23 0.36 0.43 0.5 0.63]

 
 
 
 
 
 
 

  (20) 

 𝑉𝐵 =

[
 
 
 
 
 
 
 
−0.63 −0.5 −0.46 −0.25 −0.09 0 0.25 0.4
−0.57 −0.5 −0.27 −0.17 −0.04 0.07 0.26 0.42
−0.52 −0.4 −0.24 −0.09 −0.01 0.1 0.32 0.44
−0.44 −0.4 −0.19 −0.08 0 0.25 0.43 0.48
−0.44 −0.37 −0.08 0.04 0.23 0.3 0.45 0.5
−0.41 −0.15 0 0.11 0.24 0.37 0.46 0.59
−0.41 −0.08 0.11 0.17 0.36 0.4 0.47 0.63
−0.18 0 0.16 0.21 0.38 0.4 0.5 0.64]

 
 
 
 
 
 
 

 (21) 

The rows [5, 6, 8] in the two eigenvalue vectors 

corresponding to the two KCs are not the same in absolute 

terms, and there is no resemblance in eigenvector values 

either. This isomorphic kinematic chain will be confused 

with a non-isomorphic chain, yielding a duplicate solution. 

As a result, this method based on the CTI falls short of the 

proposed method in terms of efficiency. If a comparison is 

used, it should be done to a specific level of precision and 

not in absolute. 

E. Eliminating Isomorphism Identification Method for 

Synthesizing Nonfractionated Kinematic Chains 

Based on Graph Similarity 

The basic idea behind this approach [23] is to add two-

degree vertices to a contracted graph and eliminate 

isomorphism between configurations until the desired 

configurations are attained. The process for identifying 

isomorphism consists of the following steps: 

(1) Create the contract graph matrix. 

(2) Add a row and a column to the contract graph 

matrix for each additional vertex. 

(3) Determine the fourth power of the kinematic 

chain matrix, then sort the row elements, then the 

rows themselves. 

(4) Compute the kinematic chain's distance matrix, 

then sort the row elements and rows themselves. 

If two configurations have the same sorted fourth power 

matrix and sorted distance matrix, the initial edges are 

similar. 

In contrast, the method presented in this study is as 

follows: 

(1) Convert the adjacency matrix to the reduced 

graph matrix. 

(2) Determine the reduced graph matrix's second 

power, then sort the elements of each row and 

column. 

When two configurations have the same sorted second 

power of the reduced graph matrix, they are isomorphic. 

When the detailed steps of the two methods are 

compared, the proposed method in this paper significantly 

reduces computation time (the time required to compare 

those two 42-bar kinematic chains (Fig. 16, Fig. 17) is 

about 5 × 10−4𝑠  for the proposed method versus 15 ×
10−3𝑠  for the method proposed in Ref. [23]), because it 

calculates the second power matrix rather than the fourth 

power matrix and does not require the distance matrix). 

These two criteria reduce execution time dramatically, 

especially when dealing with a high number of vertices. 

VI. AUTOMATIC COMPARATIVE   

In this section, we compare the previous three 

techniques to the proposed method on a set of 

configurations with n bars (n ranging from 8 to 110) to see 

how they compare in terms of execution time. 

The x-axis corresponds to the value 𝑘  verifying 𝑛 =
𝑘 + 𝑘 × 𝑘 where n is the number of bars. The logarithm of 

the computer time required to build the invariant used for 

the isomorphism identification is shown on the y-axis. For 

the proposed method, the invariant used is the matrix for 

isomorphism identity MII. 

An example of the configurations used in the 

comparison 

 
Figure 18. Sixteen bars KC. 
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Figure 19. Comparative graphs of the proposed method and the above 
methods. 

The first approach in the comparison section is shown 

by the (+) graph. It takes more time to produce the matrix 

identity known as KCSM, as seen in Fig. 19, and there is a 

significant variation in execution time between this 

approach and the other methods, ranging between 102 and 

106, implying that this technique is less efficient. 

The square (□) graph represents the third technique in 

the comparative section. As shown in Fig 19, when the 

number of bars is more than 42 (𝑘 = 6) (𝑛 = 6 + 6 × 6 =
42), the time taken by this technique to generate the matrix 

identity CTI is equivalent to that of the Sun's method, but 

it is still slower than the suggested method, especially as 

the number of bars grows. 

The (x) sign graph corresponds to the second approach 

in the comparison section. This method takes less time 

than the square graph for KCs with up to 35 bars (𝑘 = 6) 

and almost the same time otherwise. The latter approach is 

more efficient for any number of bars than the proposed 

method. 

The graph in Fig.19 clearly demonstrates the suggested 

method's superiority in terms of speed (short time of 

execution). 

VII. CONCLUSION 

This paper presented a simple and efficient method for 

quickly identifying isomorphisms in kinematic chains. The 

suggested technique employs a reduced graph matrix 

RGM to greatly minimize the calculation time necessary 

for identifying isomorphisms. The RGM is calculated by 

deleting the components that correspond to the binary bars 

in the KC while accounting for them with an appropriate 

code. A comparison with various published publications 

confirms the superiority of the suggested technique. 

NOMENCLATURE 

CPVS: Cubic descending power adjacency matrix 

CTI: Compound Topological Invariant  

DOF: Degree of Freedom 

KC: Kinematic Chain  

KCSM: kinematic chain structural matrix 

MII: Matrix of isomorphism identification 

RGM: Reduced graph matrix 

SRGM: Square of reduced graph matrix     

PVS: Power adjacency matrix  
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