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Abstract—The crack is one of the most common types of 

failure in pipelines that convey fluid, and early detection of 

the crack may assist to avoid the piping system from 

experiencing catastrophic damage, which would otherwise be 

fatal. The influence of flow velocity and the presence of a 

crack on the performance of a tapered simply supported pipe 

containing moving fluid is explored using the finite element 

approach in this study. ANSYS software is used to simulate 

the pipe as Bernoulli's beam theory. In this paper, the 

fluctuation of natural frequencies and matching mode shapes 

for various scenarios owing to changes in fluid speed and the 

presence of damage is discussed in detail. The findings 

demonstrated that the presence of a fracture reduces the 

stiffness of the systems, resulting in a decrease in the basic 

natural frequencies. This loss is more pronounced when the 

fracture is further away from the nodal locations for each 

mode. Finally, it is demonstrated that increasing flow velocity 

reduces natural frequencies.   

 

Keywords—damage detection, finite element, tapered pipe, 

vibration characteristics 

I. INTRODUCTION 

Pipes are used in a broad variety of applications, 

including fuel gas storage, ventilation conduits, and heat 

exchanger power plants, nuclear reactor and oil refineries. 

Pipes may experience high vibration, which may cause 

damage and, in some cases, jeopardize the ability to 

operate safely and reliably. There have been various 

studies in which vibration frequency-based damage 

diagnostics has been used to ensure the safety of structures 

and pipelines when they are placed into operation [1–10], 

and the natural frequencies are the most appealing since 

they are the most easily measured of the frequencies 

available. This necessitated an examination of the 

situations in which a crack is formed and allowed to grow 

until it causes the flow of liquid from a pipe and results in 

considerable losses. It is possible to detect damage 

expansion and assess the pipe's safety status using the 

natural frequency change when fractures spread in the 

pipes.  
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accepted March 21, 2023.  

Free and forced vibrations in pipes above ground were 

studied by Housner [1]. He found that vibrations in the 

pipeline were not affected by the fluid flow, according to 

the proposed solution based on elementary beam theory. 

For free and steady-state vibrations, substantial amplitudes 

may occur even if the amount of damping is too low. The 

basic mode of a pipeline carrying a transporting liquid was 

studied by Long [2] using analytical and experimental 

approaches for the studying of free transverse vibrations. 

The governing differential equation of motion was solved 

utilizing infinite power series. The results show that when 

flow rate increases, there is a little decrease in frequency. 

Kirubakaran [3] employed image analysis to identify 

pipeline fracture patterns. The results were utilized to 

create a mathematical morphological operator for fracture 

edge identification. However, Gaith [4] investigated 

cracks being detected in simply supported FRP beams 

using finite element modeling. 

The influence of liquid density in a pipe on vibration 

characteristics such as the fundamental circular carrying 

laminar flow and demonstrating cross-sectional change 

was examined by Al-Hashimy et al. [5]. The governing 

equation of an elastically hinged conduit of infinite length 

transporting a fluid under pressure was numerically solved 

by Stein et al. [6]. The impact of the ensuing internal 

pressure is also highlighted. An undamped system's 

stability is studied for the effects of flow velocity, 

foundation modulus, and internal pressure; critical flow 

speeds are also established. A strain rate dependent 

damage model was used by Oikonomidis [7] to construct 

a model for predicting fracture development in natural gas 

pipelines. Experimentation on a notched pipe concurred 

their model correct. 

A novel non-linear model of a pipeline transporting a 

fluid and clamped at both ends was presented by Lee and 

Chung [8]. The equations of motion for non–linear 

Lagrange strain theory and the Euler–Bernoulli beam 

theory were provided using the extended Hamilton 

principle for both axial and lateral vibrations. The Galerkin 

technique is implemented in solving the equations. Using 
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the wavelet-based finite element approach, Oke et al. [9-

10] investigated the dynamic behavior of a composite pipe 

transporting liquid with interior surface damage. A fluid 

conveying pipe's theoretical dynamic analysis has been 

done to investigate its dynamic properties [11]. 

Additionally, numerical methods have been employed to 

solve the analytical equations describing these systems, 

and when compared to the analytical solution, the findings 

are exact and precise. The investigation of simply 

supported inclined pipes that are conveying fluid under the 

influence of thermal stress has led to the development of 

an analytical model [12]. It should be noted that a number 

of factors, including aspect ratio and inclination angle, 

have been taken into account. Additionally, Jabbar et al. 

[13] analyzed the same circumstances utilizing the Euler 

beam theory model, where it should be noted that 

weariness was taken into account. Using the absolute nodal 

coordinate approach, a dynamic model of free vibration for 

a rotating pipe delivering fluid has been created [14]. It 

should be noted that studies have been done on how natural 

frequencies are affected by fluid and rotational motion. 

When changing the frequency, amplitude, and flow 

velocity, an unstable response was seen in a fixed-free  

L-shaped pipe that transports fluid, therefore a similar 

method was employed to do nonlinear analysis [15]. 

Hamilton's approach has been used in dynamic analysis for 

pipelines with varying internal thickness [16]. In cases 

where there is good agreement between the analytical 

results, finite element modeling has been done using 

ANSYS software. A significant problem in transportation 

and the design of machining operations is the way that 

moving media behave on structures and machines. Fluid 

flow acts as a concentrated tangential follower force at the 

tip of the pipe, which significantly affects the dynamic 

characteristics. It is crucial to look into these factors that 

affect structural dynamics as a result. Therefore, when 

dealing with vibration, protecting the pipe system is a vital 

responsibility. There have been various investigations 

concerning the characteristics and management of 

vibration in fluid-transport pipework as well as composite 

mechanical structures [17, 18]. However, the change in 

dynamic properties of FRP composite laminated cantilever 

beams has been researched for the purpose of detecting 

cracks as well as fractures [19–21]. 

Foundation stiffness and damping were examined by 

Lottati et al. [22] for cantilever and fixed-fixed end pipes. 

Elastic foundations are shown to raise the critical flow 

fluid velocity. Stabilizing or destabilizing effects of 

damping are based on the mass-to-fluid ratio. Tornabene 

et al. [23] implemented the generalized differential to 

explore the critical flow speeds of pipes conveying fluid 

and presented the link between the eigenvalue branches 

and the accompanying unstable flutter modes. 

Langre et al. [24] examined the stability of a thin 

flexible cylinder and treated it as a beam in order to better 

understand its behavior. The stability is investigated by 

using a finite deference approach to the frequency domain 

governing equation of motion. The flutter effect is studied 

using a linear stability analysis of lateral motion as a 

function of the key factors, which include flow velocity 

and cylinder length. For the leaking from the pipeline 

fracture, Zhang [25] developed a prediction code. The 

model was tested on single and two phases fluid flow at 

high and low temperatures.  

Crack-induced vibration mode shapes were studied by 

Nguyen [26] for the purpose of crack localization in 

conjunction with the horizontal and transverse bending 

vibration [9]. For leak detection in oil and gas pipelines, 

Lu [27] conducted a thorough review of the latest crack 

detection technologies. His evaluation contains the merits 

and disadvantages of each approach, as well as the suitable 

technical instruments for each of these techniques. 

Corrosion damage to the pipe produced by cracks and 

erosion was studied by Mohamed et al. [28]. They 

observed in their analytical study that the equations for the 

two situations exhibited good agreement with the 

experimental analysis where the change of vibrating 

sensitivity of the measuring sensor identifies faults. Using 

the obtained natural frequencies of pinned-pinned and 

clamped-clamped pipes, Jweeg et al. [29] developed a 

novel experimental method for determining the critical 

velocity of pipes carrying fluid. Using the vibration 

equation for conservative pipes, they deduced the 

frequency and critical buckling velocity expressions and 

gave a semi-analytic solution for such pipes. Multiple 

cracks in lengthy pipelines holding fluid at varying 

pressures were identified using a method based on 

measuring the change in natural frequencies [30]. 

Hamilton's approach was utilized by Kaewunruena et al. 

[31] to construct a finite element model for fluid-

conveying maritime risers. They generated fundamental 

circular frequencies and matching mode shapes for 

isotropic pipes that transport fluid on elastic layer. Natural 

frequencies and stability were studied using finite element 

analysis by Mostafa [32] for pipeline delivering 

incompressible fluid over a viscoelastic foundations with 

hinged end. An investigation of the vibration of tubular 

beams transporting fluid has been carried out by Gaith  

[33–34]. An investigation on the transverse dynamic 

response of a pipe carrying fluid with changing cross 

sectional area was conducted. The pipe is modeled using 

Euler Bernoulli’s beam theory, and the partial differential 

equations are solved using Galerkin’s approach. He 

analyzed the same pipe lying on a Winkler viscoelastic 

layer and reported the influence of numerous factors on the 

stability [35]. The flow of an electrically conducting pair 

stress fluid that is incompressible and formed by 

longitudinal and torsional oscillations of a continuously 

injected its surface was studied in the presence of a radial 

porous circular cylinder magnetic field [36]. Furthermore, 

the analytical two-dimensional heat transfer and entropy 

production properties of axisymmetric, incompressible 

viscous fluid flow in a horizontal circular conduit are 

examined [37].  

A porous circular cylinder exposed to continuous 

suction/injection at its surface was investigated using finite 

difference method by Josula et al. [38]. It should be 

mentioned that the flow is produced by executing 

longitudinal and torsional oscillations of the porous 

cylinder. However, Newtonian axisymmetric, viscous 
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heating flow’s behavior in a horizontal pipe’s two 

dimensions with regard to thermal transport was analyzed 

analytically with the flow is exposed to a steady magnetic 

field [39–40]. The impacts of fracture depth and position, 

fiber orientation, and fiber volume percentage on the 

flexibility of cracked fiber-reinforced composite beams are 

investigated along with corresponding natural frequencies 

and mode shapes [41].  

In this study, analysis of the natural frequencies of the 

pipes using ANSYS software is utilized to investigate the 

impact of crack on the frequency of pipe-carrying fluid in 

the presence of changing fluid velocities and variable 

crack depths. Cracks in the pipe are evaluated for their size 

and placement. Finite element analysis is carried out using 

ANSYS program with the aim to estimate the natural 

frequencies of a tapered cantilever pipe-carrying fluid in 

the presence of varying fluid velocities and crack depths. 

It should be mentioned that at the beginning of the study, 

the effect of relative crack position is studied for different 

crack depths at flow velocity of 10 m/s. Moreover, the 

impact of fluid flow velocity on natural frequencies is 

investigated for a crack depth 7 mm for different relative 

crack positions. Finally, at a relative crack position of 0.3 

L, the natural frequencies are estimated for different crack 

depths and fluid flow velocities. 

II. FORMULATION OF THE PROBLEM 

Fig. 1 shows a hinged pipe with an unequal inlet and 

output diameter and a clearly tapered length L. The fluid 

has an input velocity of v. 

 

Figure 1. Schematic illustrating fluid conveyance via a hinged pipe with 
a changing cross section. 

Using Hamilton’s concept for kinetic and potential 

energy of the system as a starting point  
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Hence, an equation of motion for a simply supported 

pipe is presented by Gaith and formulated as follows [34]. 

It should be mentioned that model’s kinetic energy T and 

potential energy V are derived for simply supported 

boundary conditions as in Benjamin’s approach [42]. 
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And applying the boundary conditions
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where E is Young’s constant, the pipe and fluid mass per 

unit are denoted by M and m, respectively. w(x,t) is the 

lateral displacement of the pipe, and the moment of inertia 

and the fluid velocity function at any point along the pipe 

are represented by the functions I(x), V(x), respectively. It 

should be said that h is the thickness of the pipe. a and b 

are the intake inner diameter and the exit outer and inner 

diameter, respectively. 

III. RESULTS AND DISCUSSION 

A. Finite Element Results 

Finite Element Modeling (FEM) is used widely due to 

its ability of modeling irregular and complex geometrical 

shapes. Furthermore, FEM can achieve high accuracy 

without the need of prototype.  A finite element model is 

created using ANSYS software for a simply supported 

pipe transporting a fluid with defined speed and an outlet 

diameter equal to 90% of the inlet diameter. A crack of 

specific depth and location is inserted. The pipe is meshed 

with 49482 elements and 87114 nodes as shown in Fig. 2.  

 

Figure 2. Meshed finite element model. 

A specific instance of a pipe with uniform cross section 

is examined in order to authenticate the finite element 

model. The results are obtained in terms of first natural 

frequencies for a uniform simply supported pipe with 

double cracks at different depths and locations similar to 

those used in reference [29] and found to be in excellent 

agreement as shown in Fig. 3.   
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Figure 3. Comparison of first three natural frequencies for the uniform 
cross-section with double cracks for different cases. 

The effect of cross sectional outlet to inlet diameter ratio 

on the first three natural frequencies for the considered 

system with fluid velocity v= 5 m/s, is revealed in Fig. 4. 

The results indicate that by decreasing outlet/inlet diameter 

ratio, fundamental circular frequencies as well as critical 

velocities are decreasing. It should be said that this trend 

was also found by Gaith [18]. However, the geometry and 

material properties in Table. I are used for the considered 

pipe system at room temperature where the fluid properties 

variation is neglected since there is no system temperature 

change assumption. 

 

Figure 4. First three natural frequencies versus the outlet/inlet diameter 
ratios for fluid flow velocity 5 m/s. 

TABLE
 
I.

 
THE GEOMETRY AND MATERIAL PROPERTIES FOR 

THE CONSIDERED PIPE SYSTEM
 

 
 Pipe

 

Young's Modulus
 

68.95 GPA
 

Poisson's Ratio
 

0.33
 

Length 
 

800 mm
 

Inlet Do 
 

27 mm
 

Inlet Di
 

17
 
mm

 

Outlet Do
 

21.6
 
mm

 

Outlet Di
 

13.6
 
mm

 
Fluid

 Density
 

908.2 kg/m3

 

The first mode shapes for a simply supported pipe with 

edge crack using ANSYS are
 
presented in Fig. 5

 
for flow 

velocity, crack
 
depth and crack position of 15 m/s, 5 mm 

and 0.5 L, respectively. Fig. 5 shows that when a crack is 

located near to the pipe's mid-span, the first natural 

frequency is reduced, and this drop is more pronounced 

when the fracture depth is growing. The combined impact 

of crack depth and position on the first three frequencies 

are shown in Figs. 6-8, respectively for outlet/inlet 

diameter ratio equal to 90%, and fluid velocity 5 m/s. It 

should be mentioned that Alfaqs et al. [35] Discussed same 

pipe model but for different boundary conditions. 

Moreover, current study investigates the influence of crack 

depth and position combination on natural frequencies 

contrary to previous studies [18, 33, and 34]. With a 

constant input velocity of 5 m/s, the effect of fracture 

position on the first, second, and third natural frequencies 

in the tapered pipe under consideration is depicted in Figs. 

6-8 for various crack depths of 0, 5, 7, 10, 12, and 15 mm, 

respectively. It is evident that as the fracture depth 

increases, the rigidity of the structure will decrease, which 

will have an adverse effect on all natural frequencies taken 

into account at certain points. When a crack is created, the 

system's overall stiffness is decreased, which causes a drop 

in the system's natural frequencies and deterioration of the 

related mode shapes. It is clearly observed that minimum 

first natural frequency was obtained at crack position 0.7 

L and crack depth of 15 mm as depicted in Fig. 6. However, 

for the second and third natural frequency minimum 

frequency occurred at a crack position 0.5 L and crack 
depth of 15mm. It should be said that all natural 

frequencies are not affect for crack depths 3 and 5mm for 

regardless of crack positions. 

 

 

Figure 5. Mode shapes for first three fundamental frequencies for 
the tapered hinged pipe conveying fluid. 
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Figure 6. Effect of crack depth and crack position on the first circular 

frequency of tapered simply supported pipe for fluid flow velocity 10 
m/s. 

  

Figure 7. Effect of crack depth and crack position on the second circular 

frequency of tapered simply supported pipe for fluid flow velocity 10 
m/s. 

  

Figure 8. Effect of crack depth and crack position on the third circular 

frequency of tapered simply supported pipe for fluid flow velocity 10 
m/s. 

As depicted in Figs. 9–11, the impact of input fluid 

velocity in a simply supported tapered pipe on the 

fundamental, second, and third natural frequencies is 

examined along the pipe taken into consideration for crack 

depths 0, 5, 7, 10, 12, and 15 mm at a crack position at 0.3 

L. It should be noted that regardless of the relative fracture 

position, raising the fluid's input velocity causes a modest 

drop in the pipe's natural frequencies. The least 

fundamental natural frequency found at a fluid velocity of 

90 m/s is 64.8 rad/s, as shown in Fig. 9, although it is clear 

that for a relative length of 0.3 L, the first natural frequency 

is significantly impacted by the crack's existence. In 

general, increasing both the fluid velocity and crack depth 

contributes to decrease the natural frequencies. 

 

Figure 9. Effect of crack depth and fluid velocity on the first circular 

frequencies of tapered simply supported pipe for crack relative position 
0.3 L. 

 

Figure 10. Effect of crack depth and fluid velocity on the second 

circular frequencies of tapered simply supported pipe for crack relative 
position 0.3 L. 

 

Figure 11. Effect of crack depth and fluid velocity on the third circular 

frequencies of tapered simply supported pipe for crack relative position 
0.3 L. 

Figs. 12–14 examine how fluid velocity affects the first 

three fundamental circular frequencies at various crack 

positions for fluid flow velocities 0, 50, 70, and 70 m/s 

when the crack depth is 7 mm. It is clearly observed that 

minimum first natural frequency 72.4 rad/s is recorded at 

a crack position 0.5 L for fluid flow velocity 90 m/s as 

shown in Fig. 12. However, Figs. 13–14 present the 

combined impact of crack location and fluid velocity on 

the first three fundamental circular frequencies, 

respectively, with crack depth of 7 mm. Significant impact 
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of crack location can be observed especially when it is 

close to the nodal point; however, the effect of flow 

velocity is relatively minimal. 

 

 

Figure 12. Effect of crack position and fluid velocity on the first 
fundamental circular frequencies of tapered simply supported pipe for 
crack depth 7mm. 

 

Figure 13. Effect of crack position and fluid velocity on the second 
fundamental circular frequencies of tapered simply supported pipe for 
crack depth 7mm. 

 

Figure 14. Effect of crack position and fluid velocity on the third 

fundamental circular frequencies of tapered simply supported pipe for 
crack depth 7mm. 

B. Numerical Results 

Numerical analysis was carried out using finite 

difference method used by Nagaraju and Ramana [36] to 

find the first three natural frequencies for simply supported 

pipe transporting a fluid with defined speed and an outlet 

diameter equal to 90% of the inlet diameter. Tables II, III, 

IV, and V compare numerical and finite element results for 

modal analysis at different crack relative positions and 

crack depths. It is clearly observed that good agreement is 

found between numerical and finite element results for all 

natural frequencies considered at different crack position 

and relative crack depths. 

TABLE II. NUMERICAL AND FINITE ELEMENT RESULTS FOR FIRST, 
SECOND, AND THIRD NATURAL FREQUENCIES AT CRACK POSITION 0.1 

L AND RELATIVE CRACK DEPTH 0.5 IN THE BEAM 

Frequency 

number 

Numerical 

Value (Hz) 

Ansys Value 

(Hz) 

Error (%) 

1 80 79.86 0.18% 

2 550.27 543.86 1.16% 

3 1591.63 1559.6 2.01% 

TABLE III. NUMERICAL AND FINITE ELEMENT RESULTS FOR FIRST, 

SECOND, AND THIRD NATURAL FREQUENCIES AT CRACK POSITION 0.5 

L AND RELATIVE CRACK DEPTH 0.5 IN THE BEAM 

Frequency 

number 
Numerical 

Value (Hz) 

Ansys value 

(Hz) 

Error (%) 

1 90.6 90.087 0.57% 

2 524.89 527.11 0.42% 

3 1612.85 1587.6 1.57% 

TABLE IV. NUMERICAL AND FINITE ELEMENT RESULTS FOR FIRST, 
SECOND, AND THIRD NATURAL FREQUENCIES AT CRACK POSITION 0.9 

L AND RELATIVE CRACK DEPTH 0.5 IN THE BEAM 

Frequency 

number 

Numerical 

Value (Hz) 

Ansys value 

(Hz) 

Error (%) 

1 92.92 91.906 1.09% 

2 578.88 571.06 1.35% 

3 1594.67 1573.5 1.33% 

TABLE V. NUMERICAL AND FINITE ELEMENT RESULTS FOR FIRST, 

SECOND, AND THIRD NATURAL FREQUENCIES AT CRACK POSITION 0.1 L 

AND RELATIVE CRACK DEPTH 0.7 IN THE BEAM 

Frequency 

number 

Numerical 

Value (Hz) 

Ansys value 

(Hz) 

Error (%) 

1 64.09 63.44 1.01% 

2 519.7 519.79 0.02% 

3 1565.58 1547.3 1.17% 

IV. CONCLUSION 

The effects of flow velocity and existence of crack are 

considered for a tapered simply supported pipe containing 

moving fluid using finite element method. However, the 

pipe is modeled as a Bernoulli like beam theory using 

ANSYS software. The findings revealed that the existence 

of a crack causes a drop in the stiffness of the systems, 

which results in a fall in the fundamental natural 
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frequencies. This loss is more noticeable when the fracture 

is located distant from the nodal points for each mode. 

Furthermore, it is proved that increasing flow velocity has 

an effect on reducing natural frequencies. On the other 

hand, good agreement was found between numerical and 

FE results for the first three natural frequencies when 

compared. 
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