
Implementation of Robot Operating System in

Raspberry Pi 4 for Autonomous Landing

Quadrotor on ArUco Marker

Atcha Daspan1, Anukoon Nimsongprasert1, Prathan Srichai2, and Pijirawuch Wiengchanda1,*

1 Marine Engineering Department, Academic Branch, Royal Thai Naval Academy, Samut Parkan, Thailand;

Email: yeen.cup@gmail.com (A.D.), anukoonnim@gmail.com (A.N.)

2 Department of Mechanical Engineering, Faculty of Engineering, Princess of Naradhiwas University, Naradhiwas,

Thailand; Email: prathan.s@pnu.ac.th (P.S.)

*Correspondence: pijirawuch.w@navy.mi.th (P.W.)

Abstract—This article describes the novel design and

implementation of the Robot Operating System (ROS) for

the autonomous quadrotor landing on ArUco marker

application. On a Raspberry Pi 4 companion computer, the

ROS was set up using Ubuntu Mate 18.04. Then, to create

communication between program nodes, ROS was put into

practice together with autonomous landing. In the control

approach, the Visual Inertial Odometry (VIO) technique,

which uses vision-based localization, is employed to estimate

the 3D posture. For computing the command control to

direct movement quadrotor to landing on ArUco marker,

the autolanding application is built. In experimental, 25

landing experiment trials were completed. The distance

between the Drone’s camera’s center and the ArUco

marker's center was calculated. In the results, the average

distance accuracy during experimental validation was 11.12

cm, with a standard deviation of 3.67 cm.

Keywords—quadrotor, raspberry pi, autonomous landing,

robot operating system, ArUco marker

I. INTRODUCTION

Nowadays, quadrotors have been interested in

developing to extent that several applications such as

terrain modeling [1], surveillance of civilian protection

facilities [2], aerial surveillance [3] for military purposes,

and utilization of delivery operations for commercial

purposes [4], are gradually expanding. However, a

precise landing without the use of GPS (for example,

inside) frequently necessitates a large amount of human

involvement to achieve a successful landing. Realizing

that most quadrotor crashes are caused by an

unexpectedly forceful landing during the landing

procedure, this becomes especially crucial for vital

missions and when a quadrotor is carrying expensive

equipment onboard [5]. Thus, reducing a number of

mishaps is often accomplished by using landing aid

devices. By increasing the accuracy of a quadrotor's

 Manuscript received November 17, 2022; revised December 24, 2022;

accepted February 7, 2023.

posture estimation, the issue of accurate landing might

be solved.

The ROS architecture is currently a fully functional

platform for developing robots [6–8]. It is a group of

programs, libraries, and protocols designed to make

building sophisticated and reliable robotic systems easier.

Another robotics system with a comparable platform can

use its common foundation, for instance, robots are used

today, example, in food packaging or in warehouse

logistics, using autonomous robots to successfully solve a

real life needed, such as, wheelchair [9–10]. In addition,

applications with aerial robots (drones) have been put out

in light of their MAVROS compatibility with Pixhawk

including automated landing, surveillance, and

coordination between aircraft and ground stations [11].

Pixhawk is an MAV open hardware platform. It has a

wide user and developer community, as well as

communication compatibility across varied hardware and

software, which makes designing application control

systems and installing sensor interfaces easier.

Furthermore, these benefits make it simple to develop

cross-enabled systems designed for robotic applications,

since PX4 Firmware can simply communicate with

Ubuntu of embedded systems installed on Pixhawk [12].

The aim of this project is to build, manufacture, and

program a quadrotor capable of landing autonomously on

the ArUco marker. A unique challenge will be to develop

a ROS–enabled quadrotor capable of implementing all

algorithms on a single board embedded computer.

II. HARDWARE

A. Quadrotor Desing

The quadrotor is a multirotor which is propelled by

four sets of rotors. Based on S500 Drone Frame Kit with

landing frame, 920 KV Brushless Motor with a 30 A

Electronic Speed Controller (ESC) are mounted on each

arm. Onto each motor, one black plastic 10×4.5 propeller

is equipped. The main companion computer is a

Raspberry Pi 4 device running Ubuntu Mate 18.04. The

ROS Melodic version is installed on this operating

International Journal of Mechanical Engineering and Robotics Research Vol. 12, No. 4, July 2023

210doi: 10.18178/ijmerr.12.4.210-215

system. The companion computer performed a number of

tasks, including sending control command to Pixhawk

2.4.8 flight controller and receiving data from the camera

and laser rangefinder. It also processed pose estimates

and the distance between the quadrotor and the marker.

ArUco marker is detected using the ArUco ROS package.

A 14.8 V 5200mAh 4S 45C LiPo battery pack provides

DC electric power storage for all system components.

The quadrotor with all its components is represented in

Figs. 1 and 2. In its final configuration the quadrotor

weights about 2.5 kgs and has a maximum diameter of 70

cms.

Figure 1. A quadrotor that the researcher has developed and fully
assembled.

Figure 2. Shows all components of the quadrotor system used in this
research.

B. System Configuration

Fig. 3 shows the overall system configuration of this

research. It consists of two major modules that are ArUco

detect and pose estimation application module, and

navigation module. The ArUco detect and pose

estimation application module receive data from the

camera, continuously. These data will next be subjected

to an algorithm for posture estimation and image

processing. The navigation module will then get the

processed information.

C. Electronics Component Interface

The schematic diagram of electronics circuit of the

electronics hardware interface is represented in Fig. 4.

The optical camera that captures the ArUco marker is

connected to serial port of raspberry Pi 4. The laser range

finder that measured distance between quadrotor and

ArUco marker is connected to GPIO16 pin. The flight

control as Pixhawk is connected from telemetry 2 port to

raspberry Pi 4 as GPIO14 and GPIO15 pin, shown in Fig. 3.

Figure 3. Block diagram of system configuration.

Figure 4. Schematic diagram of the connection between raspberry Pi

and fight controller.

The 5VDC LIPO battery, which has a maximum

current of 2.5 A, has been the system’s power source.

III. SOFTWARE

A. ROS Installation on Raspberry Pi

On Linux system simply communicate to the

Raspberry Pi 4 from a terminal, with the Secure Shell

(SSH) protocal by ssh username@ip-address.

$ ssh pi@192.168.1.10

The user will then be prompted by the system to enter

their login and password. Pi is the default user name,

while raspberry is the default password. The Raspberry

Pi 4 needs network connectivity in order to install ROS.

Based on [13–14], the installation instructions that

follow:

Step 1: Setting up the repositories. The following

command must be used to set the system locale:

$ sudo sh -c ‘echo “deb http://packages.ros.org/ros/

ubuntu $(lsb_release -sc) main” > /etc/apt/sources.list.d/

ros-latest.list’

Step 2: By typing the following command on a

terminal, the sources.list is configured to accept software

from packages.ros.org:

$ sudo sh -c 'echo "deb http://packages.ros.org/ros/

ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/

ros-latest.list'

Step 3: Before beginning the installation, the key

should be added to Ubuntu to make sure the download is

coming from a trusted server. Use the terminal to run the

command below:

Companion Computer

Ubuntu OS

ROS

Pixhawk

Autopilot

Detect and

Pose Estimation

Application

Navigation

Camera
4 x ESC

4 x

DC Motor
Laser Range

Finder

International Journal of Mechanical Engineering and Robotics Research Vol. 12, No. 4, July 2023

211

$ sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.

com:80' --recv-key C1CF6E31E6BADE8868B172B4F42

ED6FBAB17C654

Step 4: Use the following command to update the list

of packages:

$ sudo apt upgrade

Step 5: Use the command following to install ROS

Melodic Desktop Install:

$ sudo apt install ros-melodic-desktop

Step 6: Use the following command on the terminal to

initialize RosDep:

$ sudo apt-get install python-rosdep

$ sudo rosdep init

$ rosdep update

Step 7: The command; sets up the ROS environment.

$ echo “source /opt/ros/melodic/setup.bash” >> ~/.bashrc

$ source ~/.bashrc

Step 8: When all is done and the prerequisites are in

place, the ROS may be installed with the following

command:

$ sudo apt-get install python-rosintall

B. ROS Firmware Configulation

A catkin workspace is a directory (folder) where

researcher may build new catkin packages or edit ones

that already exist. The catkin structure makes it easier to

generate and install ROS packages. The following

command may be used to create the catkin workspace:

$ mkdir –p ~/catkin_ws/src

$ cd ~/catkin_ws/src

$ catkin_init_workspace

Using the following command to creating the initial

workspace:

$ cd ~/catkin_ws/

$ catkin_make

The catkin workspaces are created by the catkin_make

command. Now, build and devel directories ought to be

present in your ROS directory. The setup.bash file must

then be sourced in order to add this workspace to your

ROS environment:

$ source ~/catkin_ws/devel/setup.bash

C. Connecting Pixhawk to Raspberry Pi 4 with

MAVROS Protocal

Any programmable serial connection, including the

Ethernet port, may be used by PX4 to connect to

companion computers, Raspberry Pi 4. The MAVLink

protocol is used to transmit messages across the

connection.

D. Vision–based Localization

In this study, the 3D pose estimation (location and

orientation) and velocity of a moving quadrotor in

relation to a local starting point are estimated using the

Visual Inertial Odometry (VIO) technique, a kind of

vision–based localization. Visual Odometry (VO) and

inertial data from the IMU are used by VIO to determine

the quadrotor's posture from camera pictures. Optical

camera with global shutter is downward facing mounted.

ArUco marker is detected and published their positions in

ROS topics and as TF frames by aruco_detect module.

The following installation guideline is installed on

catkin_ws workspace by following

https://github.com/immersive–command

system/Pose–Estimation–Aruco–Marker-Ros [15].

E. Control Strategy for Autolanding on ArUco marker

The controller algorithm supports autonomous mission

execution by serving as an interface between the system's

component parts. To interact with the remaining nodes,

such as to read the pose estimated of the ArUco marker, it

uses ROS topics. The MAVROS package [16] offers a

communication driver and exposes a number of

commands, system state variables, and interfaces as ROS

subjects despite the fact that the autopilot employs the

MAVLink communication protocol. For instance, the

autopilot may be told to launch and fly to a certain

location by publishing to the relevant MAVROS topic.

Additionally, the local location of the quadrotor may be

tracked and processed by utilizing a callback function.

The second iteration of the transform ROS package,

known as tf2, is used by the control logic block to

maintain track of and easily transition between several

coordinate frames.

Python programming language is used for autolanding

node software development. As in Algorithm 1, once the

program is running, the ArUco will be detected. The

information obtained from ArUco detected is IDs, state

detection and pose estimation which related between

maker and quadrotor. The laser rangefinder is used for

measure distance between floor and quadrotor. If altitude

of quadrotor is less than or equal to 0 m, the system of

quadrotor is descended. If altitude of quadrotor is less

than 2 m, the landing angle () of quadrotor is 5°. If

altitude of quadrotor is less than 15 m, the landing angle

() of quadrotor is 15°.

In Fig. 5, The quadrotor's mobility is controlled by the

autolanding node compute command. This node will

continuously subscribe to the pose estimation topic from

the ArUco detect ROS package and the attitude_detected

topic from the sensor node. Additionally, this node will

always publish to cmd_vel topic to fight controller as

PikHawk.

In order to show the distance from the quadrotor to the

ground during the present movement, the sensor node

continually collects information data from the laser

rangefinder sensor and translates that information data

into centimeters. The check message is always subscribed

to by the sensor node. The sensor node will run the

software to determine the separation between the

International Journal of Mechanical Engineering and Robotics Research Vol. 12, No. 4, July 2023

212

quadrotor and the ground below when the check message

is received. The autonomous landing node, which is

receiving the most recent distance detected by the

quadrotor, receives the distance detected as an

attitude_detected message. The illustration is depicted as

Fig. 6.

Algorithm: Autolanding on ArUco marker strategy

Start
while altitude < 15m and AutolandMode_selected do

 IDs, detected ← SearchArUcoMarker()

 if ¬ detected then

 Loiter()

 else

 ID ← detected ID

 Get Pose Estimation()

 if altitude < 15m then

 landing_angle = 15

 else if altitude < 2m then

 landing_angle = 5

 else if altitude <= 0m then

 Descend()

 end if
 Autolanding()

 end if

end while

Descend and disarm Quadrotor

Figure 5. Autolanding node diagram.

Figure 6. Sensor node diagram.

IV. EXPERIMENTAL SETTINGS

The ROS implementation in the autonomous quadrotor

landing on the ArUco marking system is planned on the

basis of the communication between several nodes.

Numerous nodes are broadcasting with one another for an

application in a ROS system. In ROS system, each node

is communicating with other through manipulation by

roscore, then, roscore must be execution, firstly.

A. ArUco Marker

In this research, ArUco markers are created using an

inside marker that is 7×7 cm in size and an exterior

marking that is 30x30 cm in size. As seen in Fig. 7, the

single black encoding square is replaced by the inner

marker, which is positioned in the middle of the outer

marker.

Figure 7. ArUco Marker used in this research.

The lowest and greatest distances at which ArUco

markers may be identified are shown in Table I. These

markers can be detected from a distance of 0.2 m to 15 m.

The frequently used ArUco detect ROS package is used

to find original ArUco markers. The non-modified

aruco_detect ROS package, which is frequently used for

authentic ArUco markers detection, carries out the

detection.

B. Ros Nodes Execution

Each node in the ROS system interacts with the others

through manipulation by roscore, hence roscore must

first be executed as shown in Fig.8. As soon as roscore

launches, one of them will be launched.

• ROS Master

• ROS Parameter Sever

• rosout logging node.

To begin the connection between nodes, all of the

aforementioned systems are necessary. It may be stopped

using a keyboard interrupt, which will also turn off the

ROS system. To enable access to the ROS commands and

build into the workspace, the ROS must be source first

before performing a roscore:

$ cd ~/catkin_ws

$ source /opt/ros/melodics/setup.bash

$ source devel/setup.bash

TABLE I. DESCRIBES LOWEST AND GREATEST DISTANCES

Marker
Size

(cm×cm)

Distances

Lowest

 (m)
Greatest (m)

Inside ArUco 7×7 0.2 0.8

Exterior ArUco 30×30 0.5 15

Ros Master

Pixkawk

Autolanding

Node

Pose Estimation

message

attitute_detected

message

Cmd_vel

message

Ros Master

Laser

Rangefinder

Sensor

Node

Check message

attitute_detected

message

Autolanding

Node

subscribe

Information data

International Journal of Mechanical Engineering and Robotics Research Vol. 12, No. 4, July 2023

213

Figure 8. The roscore are executed in the terminal.

C. Application Node Execution

Using the rosrun or roslaunch command, execute the

applications node once the roscore has been launched. To

publish and subscribe to a topic or message, broadcasting

with another node requires several nodes. Therefore, in

order to perform all of an application's functionality, all

nodes must be running. As following command:

In terminal 1 to execute MAVROS package

$ roslaunch mavros px4.launch

fcu_url:="udp://:14540@192.168.1.20:14557"

In terminal 2 to execute aruco_detect ROS package

$ roslaunch asr_aruco_marker_recognition

aruco_marker_recognition.launch

In terminal 3 to execute autolanding node

$ rosrun autolanding autolanding_aruco.py

In terminal 4 to execute sensor node

$ rosrun sensor distance_sensor.py

D. Testing Validation

For the purpose of assessing the viability system,

numerous landing experiment trials were conducted. In

the five directions of drone from maker, as well as

forward (trail 1–5), backward (trail 6–10), right (trail 11–

15), left(trail 16–20), and above (trail 21–25), in each

direction, 5 landing trials were performed. 25

experiments were completed. The quadrotor lifted off to a

height of 10m during the test, then awaited instructions to

land on the ArUco marker (shown in Fig. 7). Following

receipt of the order, the quadrotor carried out the

aforementioned landing procedure. The distance between

the Drone’s camera’s center and the ArUco marker’s

center was calculated once the landing was complete.

V. RESULTS AND DISCUSSION

A. ROS Graph

ROS graph serves as a visualization graph. It helps to

visualize how distinct nodes communicate with one

another. Each node initializes a particular topic to interact

with that node only. The autonomous landing technique

has been implemented in this system using the nodes and

subjects indicated in Fig. 9. These nodes have the ability

to publish or subscribe to predefined topics, sending

messages between them.

Figure 9. The peer-to-peer network of ROS processes that are
processing data together (ROS Graph).

B. Experimental Validation of System

To gauge the effectiveness of the created technology,

several autolanding tests were conducted. 25 experiments

in all were plan to the test. The quadrotor lifted up to a

height of 6 m during the experiment and waited for the

signal to autoland on the ArUco marking. The quadrotor

executed the aforementioned landing process after getting

the order. After landing, the distance between the

quadrotor’s frame’s center and the ArUco marker’s center

was calculated. Fig. 10 shows the distances that were

measured throughout all trials. The landing position

accuracy increased substantially when Algorithm 1was

adopted. In particular, experiments showed that the error

ranged from only 6 to 19 cm, with average accuracy was

11.12 cm and the standard deviation was 3.67 cm.

Figure 10. Distances between the quadrotor frame and the ArUco
marker center (cm).

VI. CONCLUSION AND FUTURE WORK

Based on the ROS framework, this article proposes a

novel method for autolanding quadrotor using visual

sensory data. A new type of fiducial marker called

embedded ArUco was developed to address the challenge

of robust marker detection over a wide range of distances.

The applicability of the produced markers was

confirmed using quadrotor landing tests. The ROS

framework was used to implement and test a developed

marker and landing algorithm. Our virtual tests revealed a

3.67 cm standard deviation and an average landing

accuracy of 11.12 cm.

In order to improve the system, we intend to research

sensor fusion using both IMU data and the vision system.

On the other hand, a camera will be mounted on a gimbal

to enable the quadrotor to track a moving subject.

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25

D
is

ta
n

ce
 (

cm
)

Number of Experiment

International Journal of Mechanical Engineering and Robotics Research Vol. 12, No. 4, July 2023

214

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Pijirawuch Wiengchanda performed the study,

evaluated the data, and produced the report; the final draft

was approved by all authors.

ACKNOWLEDGMENT

This research has been funded by the Thailand Science

Research and Innovation (TSRI).

REFERENCES

[1] K. Kyoung–Ho, et al., “3D library platform construction using
drone images and its application to Kangwha Dolmen,” Cartoon

and Animation Studies, Ser No.48, KOSCAS, pp. 199-215, 2017.

[2] K. Nagarjuna, and G. R. Suresh, “Design of effective landing
mechanism for fully autonomous unmanned aerial vehicle,” in

Proc. International Conference on Signal Processing,

Communication and Networking (lCSCN), 2015, pp 1-6.
[3] M. A. Ma'sum et al., “Simulation of intelligent Unmanned Aerial

Vehicle (UAV) for military surveillance,” in Proc. 2013

International Conference on Advanced Computer Science and
Information Systems (ICACSIS), 2013, pp. 161-166.

[4] Amazon.com: Amazon Prime Air, 2016. [Online]. Available:

http://www.amazon.com/b?node=8037720011
[5] S. Emel’yanov, D. Makarov, A. I. Panov, and K. Yakovlev,

“Multilayer cognitive architecture for UAV control,” Cognitive

Systems Research, vol. 39, pp. 58–72, 2016.

[6] About ROS. [Online]. Available: http://www.ros.org/about-ros/

[Accessed: 26 Mar 2022]

[7] A. Koubaa, Robot Operating System (ROS): The Complete
Reference. Springer, 2016.

[8] H. Lim, J. Park, D. Lee, and H. Kim, “Build your own quadrotor,”

IEEE Robotics and Automation Magazine, Sep.2012

[9] A. Elkodama, D. Saleem, S. Ayoub, C. Potrous, M. Sabri, and M.

Badran, “Design, manufacture, and test a ROS operated smart

obstacle avoidance wheelchair,” International Journal of
Mechanical Engineering and Robotics Research, vol. 9, no. 7, pp.

931-936, July 2020.

[10] A. B. Wahid, U. Siraj, M. Affan, H. Ahmed, F. Islam, U. Ansari,
M. Naveed, and Y. Ayaz, “Development of modular framework

for the semi-autonomous RISE wheelchair with multiple user

interfaces using robot operating system (ROS),” International
Journal of Mechanical Engineering and Robotics Research, vol. 7,

no. 5, pp. 515-520, September 2018.

[11] F. Cocchioni, V. Pierfelice, A. Benini, A. Mancini, E. Frontoni, P.
Zingaretti, G. Ippoliti, and S. Longhi, “Unmanned ground and

aerial vehicles in extended range indoor and outdoor missions,” in

Proc. International Conference on Unmanned Aircraft Systems,
2014, pp. 374–382.

[12] L. Meier, D. Honegger, and M. Pollefeys, “PX4: A node-based

multithreaded opensource robotics framework for deeply
embedded platforms,” in Proc. IEEE International Conference on

Robotics and Automation, 2015, pp. 6235–6240.

[13] E. Fernández, L. S. Crespo, A. Mahtani, and A. Martinez,
Learning ROS for Robotics Programming, Packt Publishing Ltd,

2015.

[14] L. Joseph, J. Cacace, Mastering ROS for Robotics Programming:
Best Practices and Troubleshooting Solutions When Working with

ROS, Packt Publishing Ltd, 2021.

[15] Human-UAV interaction research group. [Online]. Available:
https://github.com/immersive-command-system/Pose-Estimation-

Aruco-Marker-Ros [Accessed on 20 August 2022]

[16] Mavros. [Online]. Available: https://github.com/mavlink/mavros/
[Accessed on 4 May 2022]

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any
medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

International Journal of Mechanical Engineering and Robotics Research Vol. 12, No. 4, July 2023

215

