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Abstract—When a robot manipulator operates at high 

speeds, the elastic vibration of its links is inevitable. To 

study this vibration phenomenon, the present paper deals 

with the problem of modelling, the dynamic stability control 

and calculating inverse dynamics of a single-link flexible 

manipulator. An algorithm to study dynamic stability and 

calculate inverse dynamics of flexible manipulators is 

proposed. The proposed algorithm is demonstrated and 

verified by the model of a flexible single-link manipulator. 

Through numerical simulation, the efficiency and usefulness 

of the proposed algorithm were demonstrated as well.   

 

Keywords—flexible manipulator, linearization, Taguchi 

method, dynamic stability, periodic system 

I. INTRODUCTION 

Recently, flexible robots have been used in space 

technology, nuclear reactors, medical engineering, and 

many other fields. Flexibility, small volume, high speed, 

and low power consumption are advantages over rigid 

robots. However, the elastic displacements created by 

flexible links are the main cause of questions about 

position accuracy, structure stability and vibration. Some 

scientists have done research to solve those problems. 

However, the research results obtained are still relatively 

few and need to be studied further. 

Recent valuable reviews on dynamics and control of 

flexible robots related to the existing works till 2016 are 

provided in some articles [1–4]. According to these works, 

the stability and vibration analysis of flexible robots have 

been little studied. It should be noted that in many 

applications of robot design and control, the computation 

of the full flexible model of a robot is not necessary, 

while the knowledge of its natural frequencies is required. 

Bayo et al. [1] and Asada et al. [2] have proposed two 

different algorithms for calculating the torques required 

to move the end effector of flexible manipulators. A brief 

description of the development of stabile and vibration 
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analysis of flexible manipulators has been depicted here. 

Some studies on the dynamic stability control of elastic 

manipulators have been presented in [3–13]. In general 

terms, an inverse dynamic problem for a serial 

manipulator is the problem of finding the joint torques 

that will produce a given end-effector motion. The 

inverse dynamics is originally designed to control the 

robotic manipulator. Motion control problems of flexible 

robots are divided into two classes: regulation and 

tracking control [14]. The regulation is the control 

problem around the desired equilibrium configuration of 

the robot. By the regulation 
dq is constant, 

thus
d d= =q q 0 . If the equilibrium configuration of the 

rigid robot is chosen as the fundamental motion, the 

equation for the error dynamics in first order 

approximation has the following form ( )t= +x Ax f , 

where A is a constant matrix. The task of dynamic 

stability control is to determine the eigenvalues of matrix 

A of flexible manipulators [3–6]. Kumar and Pratiher [7] 

investigated the nonlinear phenomena of dynamic 

responses under 3:1 internal resonance in the two-link 

flexible manipulator. The tracking control in the joint 

space consists of a given time-varying trajectory ( )d tq  

and its successive derivatives ( )d tq  and ( )d tq  which 

respectively describe the desired velocity and 

acceleration. In this case, A  is no longer a constant 

matrix, but a time-varying matrix. Robots with flexible 

links are vibration systems. Therefore, the most important 

problem in robots with flexible links is the problem of 

determining the dynamic stability domain. Several 

schemes for performing these objectives do exist. Note 

that homogeneous linear differential equations or 

nonlinear autonomous differential equations can only be 

solved numerically. Therefore, the problem of dynamic 

stability control for the elastic manipulators in this case is 

usually only calculated by a numerical simulation method 

[8–13]. 

For the serial manipulator with rigid links, if the end-

effector motion is known, inverse dynamics allows 
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computation of the joint torques to the joints to obtain the 

desired motion of the end-effector. For the serial 

manipulator with flexible links, if the end-effector motion 

is known, we can not calculate the desired motion of the 

end-effector. Because we don’t know the motion of the 

elastic coordinates. The inverse dynamics analysis for 

flexible robots by tracking control has been little studied, 

and the dynamic stability control of flexible manipulators 

is presently still an open problem. Robots with elastic 

links are vibration systems. Therefore, the most important 

problem in robots with flexible links is the problem of 

determining the dynamic stability domain. The main 

contribution of this paper is the study of dynamic stability 

control and the calculation of periodic vibration of a 

rigid-flexible link manipulator. Then it is possible to 

calculate the approximate force/torque of the actuators of 

the rigid-flexible link manipulator. 

In this study, the linearization problem of the non-

linear equations governing the motion of flexible 

manipulators in the vicinity of the periodic fundamental 

motion is addressed. A procedure based-Taguchi method 

[15–18] is proposed to design the control parameters of a 

controller PD for the system of a single-link flexible 

manipulator that is described by a linear differential 

system with time-periodic coefficients. Then the 

calculation of the actuator torques of the flexible 

manipulators is presented. 

II.  DYNAMICS OF A SINGLE-LINK FLEXIBLE 

MANIPULATOR 

A. Equations of Motion Using the Floating Frame of 

Reference Approach  

Using the floating frame of reference approach [19], 

the motion equations for a single-link flexible 

manipulator shown in Fig. 1 are derived. As shown in the 

figure, a single-link flexible manipulator OE of length l 

with a rotor located at the hut and a payload at the free 

end. The end of the link is attached to the O point 

(including the motor) revolving around O-axis, and mass 

Em  is attached at E. The link is considered as a 

homogeneous beam with area A. 

 

Figure 1. Single-link flexible

 

manipulator.

 

To describe the kinematics, the position of point P
 
on 

the flexible beam is given as:
 

cos ( , )sin

sin ( , )cos

P a a

P a a

x x q w x t q

y x q w x t q

= −

= +
  (1) 

Differentiation of Eq. (1) yields 

2 2 2 2 2 2 2( )( ) 2P P P a av x y w x q w xwq= + = + + +   (2) 

It follows that   

           2 2 2 2 2( )( ) 2E E a E E av w l q w lw q= + + +     (3) 

The Euler-Bernoulli beam theory and Ritz-Galerkin 

method are applied to study the transverse vibration of 

the flexible link with assuming that the deformation in the 

longitudinal direction is negligibly small. Let the 

transverse deformation of the beam be written as: 

1 1

( , ) ( ) ( ), ( ) ( )
N N

i ei E i ei

i i

w x t X x q t w X l q t
= =

= =          (4) 

where ( )eiq t are unknown generalized coordinates of 

transverse deformation, ( )iX x  are a set of mode shapes of 

transverse deformation of a clamped-free beam and N is 

the number of modes used to describe the defection of the 

flexible link. The mode shapes are given as [20]:  

( )

( ) cos( ) cosh( )

cos cosh
sin( ) sinh( )

sin sinh

i i i

i i
i i

i i

X x x x

l l
x x

l l

 

 
 

 

= −

+
+ − +

+

     (5) 

The kinetic energy of the flexible manipulator is given 

by: 

1

2 2 2

1

0

1 1 1
( )

2 2 2

E OE

l

a E E P

T T T T

J q m v Av dx

= + +

= + + 
                (6) 

where 
1J  is the mass moment of inertia of link 1 

(including the motor) with respect to the point O, 
Em  is 

the mass at point E, A  is the mass per unit length of the 

beam.  

Substituting Eqs. (1), (2), (3) and (5) into Eq. (6), we 

obtain the kinetic energy of system  

2 3 2

1

2 2 2

2 2 2

0 0

0

1 1 1
( )( )
2 2 6

1
[ ( ) 2 ]

2

1 1
+ ( )

2 2

1

2

E a

E E a E E a

l l

a

l

a

T J m l Al q

m w q w lw q

A w dx A q w dx

Aq xwdx



 



= + +

+ + +

+

+

 



         (7) 

The strain energy of the beam OE according to Reddy 

[21] is given by: 

2
2

20

1

2

l

e

w
EI dx

x

 
 =  

 
  (8) 

where E and I are the modulus of elasticity, area moment 

of inertia of the beam, respectively.  

Substitution of Eqs. (1), (4) and (5) into Eq. (8) yields : 
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1

1

*

1 1

[ sin ( ) ( )cos ]

sin
cos

2

1

2

N

E a i ei a

i

N
OE a

a i ei

i

N N

ij ei ej

i j

m g l q X l q t q

m gl q
g q C q

EI k q q



=

=

= =

 = +

+ +

+







     (9) 

where  

                   
0

l

i iC X dx=  ; *

0

l

ij i jk X X dx =                (10) 

Lagrange’s equations have the following form [22]: 

*

j

j j j

d T T
Q

dt q q q

   
− = − + 

    

, j = 1,2,…, n    (11) 

where jq are the generalized coordinates which include 

rigid body coordinate 
aq as well elastic modal 

eiq , and 
*

jQ  are generalized forces. In this paper *

j aj djQ τ M= + , in 

which djM is damping force which has the following form 

                       
d aM q=                       (12) 

By substituting Eqs. (7), (9) and (12) into Eq. (11), we 

obtain the equations of motion of the system as:  

2 3

1

1 1

1 1

1 1

1 1

1 1

1

1
[

3

( ) ( ) ]

[2 ( ) ( )

2 ]

[ ( )]

[ cos ( ) sin ]

os

2

N N

E ij ei ej

i j

N N

E i j ei ej a

i j

N N

E i j

i j

N N

ij a ei ej

i j

N N

i E i ei

i i

N

E a i ei a

i

OE a

J m l Al A m q q

m X l X l q q q

m X l X l

A m q q q

A D m l X l q

m g l q X l q q

m glc q

 





= =

= =

= =

= =

= =

=

+ + +

+

+

+

+ +

= − −

− +









 



τ
1

sin
N

a i ei d

i

g q C q M
=

+ −

             (13) 

 

*

1 1 1

2

1 1

[ ( ) ]

[ ( ) ( ) ]

[ ( ) ( ) ]

( )cos cos

E i i a

N N N

E i j ij ej ij ej

j j j

N N

E i j ej ij ej a

j j

E i a i a

m lX l AD q

m X l X l A m q EI k q

m X l X l q A m q q

m gX l q gC q









= = =

= =

+

+ + +

− +

= − −

  

 
     (14) 

 i = 1,2,…,N. 

 

where  

                
l

i i

0

D = xX dx ;  
0

l

ij i jm X X dx=               (15) 

If we choose N = 1 and use of symbols 
1e eq q= , the 

differential equations of the single-link flexible 

manipulator have the following form  

τ

2 3 2 2 2

1 11 1

2

1 1 1

11 1

1

1
[ ( ( ) )]

3

[ ( )] [2 ( )

os
2 ] sin

2

[ cos ( ) sin ]

E e E e a

E e E

OE a
a e e a e

E a e a d

J m l Al Am q m X l q q

AD m lX l q m X l

m glc q
Am q q q g q C q

m g l q X l q q M

 



 

+ + + +

+ + +

+ + −

= − − + −

       (16) 

 
2

1 1 1

2 2 2

11 1 11

*

11

1 1

( ) ( )

( )

( )cos cos

E e E a a

e E a e a e

e

E a a

m X l q m lX l q AD q

Am q m q X l q Aq m q

EIk q

m gX l q g q C



 



+ +

+ − −

+

= − −

            (17) 

B. Linearization of the Motion Equations about the 

Fundamental Motion 

We consider now the problem of linearizing motion 

equations of the single-link flexible manipulator in Fig. 1 

as a demonstration example.  

1) The fundamental motion  

The fundamental motion of the considered manipulator 

is the virtual rigid link motion of link OE [2]. In this 

rigid-link motion, the position of the point E on the link is 

given as 

cos ( ), sin ( )R R R R

E a E ax l q t y l q t= =              (18) 

The mass moment of inertia of the virtual rigid link 

with respect to point O takes the form 

 3 2

1

1

3
O EJ Al m l J= + +      (19) 

Using the momentum theorem, it follows that  

3 2

1

1
( ) ( ) ( )

3

1
( + )cos ( )
2

R R R

a d E a

R

OE E a

τ t M Al m l J q t

gl m m q t

= + + +

+

                       (20) 

Assuming that the motion rule of the drive has the 

following form 

( ) sin( )
2 2

R

aq t t
 

= +                 (21) 

By differentiating Eq. (20) and then substituting the 

obtained result into Eq. (19) we have 

2
3 2

1

( ) cos( )
2

1
( )sin( )

2 3

1
( + )cos( sin( ))
2 2 2

R

a

E

OE E

τ t t

Al m l J t

gl m m t







 


= 


− + + 

+ + 

              (22) 

From Eq. (20) the position of point E on the link is 

given as: 

cos ( ) cos( sin( ));
2 2

sin ( ) sin( sin( ))
2 2

R R

E a

R R

E a

x l q t l t

y l q t l t

 

 

= = + 

= = + 

        (23) 

The fundamental motion of the manipulator is 

described by ( )R tq  and ( )R tτ , where ( )R tq  is the 

generalized coordinate of the manipulator  
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 ( ) ( ) ( ) ( ) 0
T T

R R R R

a e at q t q t q t   = =   q        (24) 

And ( )R tτ  is the torque  

 ( ) 0
T T

R R R R

a e at τ τ = τ   =    τ         (25) 

In Eqs. (24) and (25) ( )R

eq t  denotes the elastic 

generalized coordinate and ( )R

eτ t  the elastic torque of the 

virtual rigid link. 

2) Linearization of the motion equations 

The differential equations of the manipulator according 

to Eqs. (16) and (17) can be expressed in the following 

matrix form 

 ( ) ( , ) ( ) ( )t+ + =M q q C q q q g q τ        (26) 

where ,q q  and q  are vectors of generalized coordinates, 

generalized velocity and acceleration, respectively 

     , , ( ) = ( ), ( ) ( ),0
T T T

a e a e aq q t τ t τ t τ t= =q τ    (27) 

Let 
aq and 

eq are the difference between the real 

motion ( )tq and the fundamental motion ( )R tq , it follows 

that 

1( ) ( ) ( ) ( ) ( )R R

a a a aq t q t q t q t y t= +  = +                   (28) 

 
2( ) ( ) ( ) ( )R

e e eq t q t q t y t= +  =            (29) 

where  
1y  and 

2y  are called the additional motion or the 

perturbed motion. Similarly, we have 

    ( ) = ( ), ( ) ( ),0
T T

a e at τ t τ t τ t=τ          (30) 

By substituting Eqs. (28), (29) into Eq. (24) and using 

Taylor series expansion around the fundamental motion, 

then neglecting nonlinear terms, we obtain a system of 

linear differential equations with time-varying 

coefficients for the manipulator as follows [22]  

 ( ) ( ) ( ) ( )L L L Lt t t t+ + =M y C y K y h          (31) 

Matrices ( ), ( ), ( )L L Lt t tM C K  and vector ( )L th  in Eq. 

(31) have the following forms 

2 2

1 1 1

2

1 1 1 11

1
( )

( ) 3

( )

E OE E

L

E E

J m l m l AD m lX l
t

m lX AD m X l Am



 

 
+ + + =

 
+ +  

M     (32) 

 
0

( )
0 0

L t
 

=  
 

C      (33) 

11 12

21 22

( )L

k k
t

k k

 
=  

 
K     (34) 

where   

11

12 21 1 1

2 2 2 *

22 1 11 11

sin ( )
sin ( ) ,

2

( )sin ( ) sin ( ) ,

[ ( )] ( ) [ ( )] .

R
R OE a
a E

R R

E a a

R R

E a a

m gl q t
k l q t m g

k k m gX l q t g q t C

k m q t X l A q t m EIk





= − −

= = − −

= − − +

 

And  

1 1

1 1

0

( )cos ( ) cos ( )( )

( ) ( )

R R

E a aL

R R

E a a

m gX l q t g q t Ct

m lX q t AD q t





 
 
− −=  

 − − 

h      (35) 

where fundamental motion ( )R

aq t is given by Eq. (21) and 

constants *

1 1 1 11 11, , , ,C D X m k  are determined by Eqs. (5), (10) 

and (15). It should be noted that matrices 

( ), ( ), ( )L L Lt t tM C K  and vector ( )L th  in this example are 

time-periodic with least period T. For numerical 

simulation, the calculating parameters of the considered 

manipulator are listed in Table I. 

TABLE I.  PARAMETERS OF THE MANIPULATOR 

Parameters of the model Variable and unit Value 

Length of link ( )l m  0.9 

Sectional area of beam A (m2) 44 10−  

Density of beam   (kg/ m3) 2710 

Inertial moment of 
sectional area of beam 

I (m4) = bh3/12 81.33333 10−  

Modulus E (N/m2) 107.11 10  

Mass moment of inertia of 
link 1 (including the motor) 

( )2

1 kg.mJ  55.86 10−  

Mass of payload 
Em   (kg) 0.1 

Drag coefficient ( . . / )N m s rad  0.01 

It follows from the parameters in Table I that 

1 1

*

11 11 1

0.7046317896, 0.4607100845,

0.8998501520, 16.95515100, 2

C D

m k X

= − = −

= = = −
 

III. DYNAMIC STABILITY CONTROL OF A FLEXIBLE 

MANIPULATOR USING THE FLOQUET THEORY 

In the steady of a flexible manipulator, the matrices 

( ), ( ), ( )L L Lt t tM C K  and vector ( )L th  of the linear 

differential equations (31) are time-periodic with the least 

period 2T =  . For calculation of dynamic stability 

condition, we shall consider a system of homogeneous 

linear differential equations: 

( ) ( ) ( ) 0L L Lt t t+ + =M y C y K y               (36) 

According to Floquet theory [25], the characteristic 

equation of Eq. (36) is independent of the chosen 

fundamental set of solutions. From characteristic equation 

of Eq. (36) we can calculate the Floquet multipliers 

( 1,..., )k k n = . If 1k  , the trivial solution 0=y  of Eq. 

(36) will be asymptotically stable. Conversely, the 

solution 0=y of Eq. (36) becommes unstable if at least 

one Floquet multiplier has modulus being larger than 1. 

In this case we need to design the controller for 

stabilization the motion of flexible manipulator.  

A. The PD Controller 

It should be noted that the PD controller applied on the 

input link can be selected according to the formula: 

1 1 1 1 1 1( ) ( )R R

a d p d pτ k q q k q q k y k y = − − = − −a a a a- -            (37) 
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The linearized equation according to Eq. (31) now 

takes the form  

( ) ( ) ( ) ( )L L L L D Pt t t t − −M y + C y + K y = h K y K y          (38) 

where 
DK and 

PK  are diagonal matrices with positive 

elements as: 

 1 1
0 0

;
0 0 0 0

d p

D P

k k   
= =   

   
K K   (39) 

It follows from Eqs. (38) that  

( ) [ ( ) ] [ ( ) ] ( )L L D L P Lt t t t+ +M y + C K y + K K y = h   (40) 

Eq. (40) can then be written in the form 

 ( ) ( ) ( ) ( )1 1 1 1
( ) ( ) ( ) ( )L L L Lt t t tM y + C y + K y = h   (41) 

where 

  ( )1
( ) ( )L Lt t=M M  , ( )1

( ) ( )L L Pt t= +K K K , 

( )1
( ) ( )L L Dt t= +C C K ,  ( )1

( ) ( )L Lt t=h h   (42) 

Eq. (41) can then be expressed in the compact form as: 

 ( ) ( )t t= +x P x f     (43) 

where we use the state variable  

, , ,
T T

T T T T   = =   x y y x y y                         (44)  

And the matrix of coefficients P(t), vector f(t) are 

defined by 

( )1 (1) 1 (1) 1 (1)
( ) ,

L L L L L L

t t
− − −

   
= =   

− −   

0 E 0
P f

M K M C M h
      (45) 

To study the dynamic stability conditions of the 

manipulators, the properties of the homogeneous linear 

differential system corresponding to Eq. (43) is now 

considered: 

 ( )t=x P x             (46) 

where ( )tP  is a matrix of periodic elements with period T. 

Based on the stable criteria according to the Floquet 

multipliers [23], the gain values of the PD controller in 

Eq. (37) are chosen so that all Floquet multipliers of Eq. 

(46) have negative real parts and the transient oscillation 

time is as short as possible. 

Based on these Floquet multipliers stability criteria of 

(46) are given as following:  

• If the moduli of all the Floquet multipliers of the 

characteristic equation are less than the unity, 

then the periodic system Eq. (46) is 

asymptotically stable at the origin. 

• If even one of Floquet multipliers of the 

characteristic equation has a modulus larger than 

unity, then the periodic system Eq. (46) is 

asymptotically unstable at the origin. 

• If there is no Floquet multiplier of the 

characteristic equation with a modulus greater 

than unity, but there is a Floquet multiplier with 

a modulus equal to the unity, then the solution of 

the system of differential equations (46) may be 

stable, and may also be unstable, depends on the 

nonlinear terms. 

B. A Procedure for Determination of Gain Values 

According to Floquet Multipliers Using the Taguchi 

Method 

Taguchi method is a powerful technique to optimize 

performance of the products or process. Taguchi 

developed the orthogonal array method to study the 

systems in more convenient and rapid way, whose 

performance is affected by different factors when the 

system study become more complicated with an increase 

in the number of factors [14–17]. This method can be 

used to select the best results by optimization of 

parameters with a minimum number of test runs. We note 

that the Taguchi method has the following advantages: It 

is not necessary to use the derivative of the target 

function to calculate optimal parameters, and the method 

allows the determination of multiple stable parameters for 

the linear differential systems with time-periodic 

coefficients of complex structures. 

Taguchi’s approach to the product design process may 

be divided into three stages: system design, parameter 

design, and tolerance design. System design is the 

conceptual design stage where the system configuration is 

developed. Parameter design, sometimes called robust 

design, identifies factors that reduce the system 

sensitivity to noise, thereby enhancing the system's 

robustness. Tolerance design specifies the allowable 

deviations in the parameter values, loosening tolerances if 

possible and tightening tolerances if necessary. 

Taguchi's objective functions for robust design arise 

from quality measures using quadratic loss functions. In 

the extension of this definition to design optimisation, 

Taguchi suggested the signal-to-noise ratio (SNR). 

Maximizing the SNR results in the minimization of the 

response variation and more robust system performance 

is obtained. 

The most important task in Taguchi's robust design 

method is to test the effect of the variability in different 

experimental factors using statistical tools. The 

requirement to test multiple factors means that a full 

factorial experimental design that describes all possible 

conditions would result in a large number of experiments. 

Taguchi solved this difficulty by using orthogonal arrays 

(OA) to represent the range of possible experimental 

conditions. After conducting the experiments, the data 

from all experiments are evaluated using the analysis of 

variance (ANOVA) and the analysis of mean (ANOM) of 

the SNR, to determine the optimum levels of the design 

variables. The optimisation process consists of two steps; 

maximizing the SNR to minimize the sensitivity to the 

effects of noise, and adjusting the mean response to the 

target response. 

In some cases, the optimal design is the least robust, 

and designers have to make a tradeoff between target 

performance and robustness. Ideally, one should optimise 

the expected performance over a range of variations and 

uncertainties in the noise factors. 
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Taguchi’s techniques were based on direct 

experimentation. However, designers often use a 

computer to simulate the performance of a system instead 

of actual experiments. 

We use the Taguchi method to determine the gain 

values of the PD controller. The target function is defined 

by the biggest modulus of Floquet multipliers and the 

target Floquet multiplier. The desired value of the target 

Floquet multiplier is usually chosen empirically. 

In this section we present a procedure for determining 

the control parameters of the flexible manipulator shown 

in Fig. 1. This section presents an algorithm based on the 

Taguchi method to optimally design the gain values of 

the PD controller. 

Step 1: Selection of control parameters and initial 

levels of control parameters  

The gain values of the PD controller are chosen as 

components of the vector of control parameters which has 

the following form  

  1 2 1 1

TT

p dx x k k = =  x                   (47) 

The initial three levels of each control parameter are 

chosen at random as shown in Table II.  

TABLE II.  CONTROL PARAMETERS AND INITIAL LEVELS OF EACH 

CONTROL PARAMETER 

Levels 
Control parameters 

kp1 kd1 

1 1 0.5 

2 5 7 

3 25 26 

Step 2: Calculation of Floquet multipliers and 

selection of target function 

The Floquet multipliers of Eq. (46) are calculated to 

the algorithms in [25] and can be arranged in a vector as 

follows: 

 
1 2 3 4[ ]T    =   (48) 

Step 3: Selection of orthogonal array and 

calculation of signal-to noise ratio (SNR)  

Three levels of each control parameter are applied, 

necessitating the use of an L9 orthogonal array [16, 17]. 

Coding stage 1, stage 2, stage 3 of the control parameters 

are the symbols 1, 2, 3. The signal-to noise ratio (SNR) of 

control parameter x  is evaluated using the following 

formula [16, 17]: 

 
2

10 max(SNR) 10log ( ) ,

1,2,...,9

j j dj

j

  = = − −

=

 (49) 

where max j
  is the biggest modulus of Floquet 

multipliers in the thj  experiment, and 
d  is desired value 

of the target function. The desired value of the target 

function is usually chosen empirically. In this example 

we choose 0.3d = . The obtained results are shown in 

Table III.  

TABLE III.  DESIGN USING L9 ORTHOGONAL ARRAY 

Trial (j) 
Control parameters Results 

kp1 kd1 
max

  SNR  

1 1 1 4.0561 −11.4948 

2 1 2 1.2233 0.6930 

3 1 3 1.0570 2.4184 

4 2 1 0.4767 15.0542 

5 2 2 0.6879 8.2258 

6 2 3 0.9062 4.3473 

7 3 1 0.4802 14.8872 

8 3 2 0.0181 10.9991 

9 3 3 0.4158 18.7229 

Step 4: Analysis of signal-to-noise ratio (SNR)  

Using the values of SNR of control parameters in 

Table III, we can calculate the mean value of the SNR of 

control parameters corresponding to the levels 1, 2, 3: 

 

1

p1

2

p1

3

p1

1

d1

2

d1

SNR(k )=[SNR(1)+SNR(2)+SNR(3)]/3=

SNR(k )=[SNR(4)+SNR(5)+SNR(6)]/3=9.2091

SNR(k )=[SNR(7)+SNR(8)+SNR(9)]/3=14.86973

SNR(k )=[SNR(1)+SNR(4)+SNR(7)]/3=6.148867

SNR(k )=[SNR(2)+SNR(5)+SNR(8

-2.79447

3

d1

)]/3=6.6393

SNR(k )=[SNR(3)+SNR(6)+SNR(9)]/3=8.4962

 

In which  

1 2 3 1 2 3

p1 p1 p1 d1 d1 d1SNR(k ),SNR(k ),SNR(k ),SNR(k ),SNR(k ),SNR(k )  

are the mean square deviation of the control parameters 
1 2 3 1 2 3

p1 p1 p1 d1 d1 d1k ,k ,k ,k ,k ,k at the levels 1, 2, 3, respectively. 

Then the SNR of the control parameters can be plotted to 

use for optimization of seat displacement as shown in 

Fig.  2. 

From Fig. 2, the optimal signal-to-noise ratio of the 

control parameters can be derived as follows: 

SNR (kp1) = 14.86973, SNR (kd1) = 8.4962             (50) 

 

 

Figure 2.  Diagram of level distribution of mean signal-to-noise ratio of 
the control parameters. 
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Step 5: Selection of new levels for control 

parameters  

From Eq. (50), it can be seen that the optimal SNR of 

the control parameters is different. This makes it easy to 

perform iterative calculation. Firstly, new levels for 

control parameters are selected. Based on the level 

distribution diagram of the parameter in Fig. 2, we choose 

the new levels of control parameters as follows: The 

optimal parameters are levels with the largest value of the 

parameters, namely, kp1 level 3, kd1 level 3. Therefore, we 

have the values of the new levels as follows: 

If level 1 is optimal then the next levels are 

 

level 2_new = level1_old

level 2_old level1_old
level1_new = level1_old

2

level 2_old level1_old
level 3_new = level1_old +

2





−
−


 −



 

If level 2 is optimal then the next levels are  

 

level 2_new = level 2_old

level 2_old level1_old
level1_new = level 2_old

2

level 3_old level 2_old
level 3_new = level 2_old +

2





−
−


 −



 

 

If level 3 is optimal then the next levels are 

 

level 2_new = level 3_old

level 3_old level 2_old
level1_new = level 3_old

2

level 3_old level 2_old
level 3_new = level 3_old +

2





−
−


 −



 

According to the rule presented above, we have the 

new levels of control parameters in Table IV. 

TABLE IV.  CONTROL FACTORS AND NEW LEVELS OF CONTROL 

PARAMETERS 

Levels 
Control parameters 

kp1 kd1 

1 15 16.5 

2 25 26 

3 35 35 

Then the analysis of signal-to-noise ratio is performed 

as the step 2. 

Step 6: Check the convergence condition of the 

signal-to-noise ratio and determine the optimal 

control parameters 

After 60 iterations, we obtain the optimal noise values 

of the control parameters with the results listed in 

Table  V. 

TABLE V.  SNR VALUES OF THE CONTROL PARAMETERS AND ANOM 

AND ANOVA IN THE ROW OF THE SNR 

Trial 
Calculation Results 

SNR (kp1) SNR (kd1) Mean Variance 

1 14.8697 8.4962 11.68295 10.15538 

2 23.1742 20.9025 22.03835 1.290155 

3 27.3572 28.9904 28.1738 0.666836 

4 33.4549 34.104 33.77945 0.105333 

5 44.2991 47.0856 45.69235 1.941146 

… … … … … 

56 274.9553 274.9553 274.9553 0 

57 274.9553 274.9553 274.9553 0 

58 274.9553 274.9553 274.9553 0 

59 274.9553 274.9553 274.9553 0 

60 274.9553 274.9553 274.9553 0 

To determine the mean and variance of SNR we use 

the following formulas 

p1 d1SNR(k )+SNR(k )
Mean=

2
  (51) 

 1

2

d1

2

pSNR(k )-Mean

2
V

SNR
=

(k )-Mean+
ariance

     (52) 

According to the above analysis, we obtain the optimal 

parameters of after 60 iterations. The optimal control 

parameters are given as follows 

 kp1= 37.1617, kd1=29.241          (53) 

Using these values, it is easy to find the optimal 

Floquet multipliers of Eq. (46). 

 
1 2 3 40.3 , 0, 0, 0.   = = = =    (54) 

C. Determine Control Parameters in a Number of 

Common Speed Ranges 

We choose the desired motion rule of the active links 

such as Eq. (21) 

 ( ) sin( )
2 2aq t t = +                     (55) 

Using the algorithm presented in paragraph 3.2, we can 

determine the control parameters corresponding to some 

popular speed ranges as follows Table VI. 

TABLE VI.  CONTROL PARAMETERS IN SEVERAL SPEED RANGES 

  1pk  
1dk    1pk  

1dk  

  37.1617 29.241   23.0147 6.8628 

  28.7617 11.7501   20.1903 5.4368 

  22.2666 6.7208   15.0579 3.7541 
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IV.   APPROXIMATE CALCULATION OF INVERSE 

DYNAMICS OF FLEXIBLE MANIPULATOR 

In previous section, the stability analysis of the flexible 

manipulator has been studied. In this section an 

approximate method for calculation of inverse dynamics 

of flexible manipulator is proposed. 

A. Calculating Periodic Oscillation of a Flexible 

Manipulator  

The linearized differential equations of motion of the 

single-link flexible manipulator have the following form  

 (1) (1) (1) (1)( ) ( ) ( ) ( )L L L Lt t t tM y + C y + K y = h .               (56) 

As known in the theory of linear differential equations 

[24] when the system of homogeneous linear differential 

equations is asymptotically stable, then the system of 

differential equations having the right side Eq. (56) has 

periodic solution. Using the algorithm proposed by 

Khang et al. in [25], the periodic oscillation of the system 

of Eq. (56) can be calculated in the following form 

 * * *

1 2
 =  y y y     (57) 

When the parameters KP and KD are chosen so that the 

system of homogeneous linear differential equations is 

asymptotically stable is stable quickly, the solution of 

Eq.  (56) has the form 

    *
y y .                     (58) 

Using the control parameters in Table VI, some 

simulation results of solutions of Eq. (51) are shown in 

Fig. 3. 

From perturbed motions y, we call determine the 

generalized coordinats, velocities and accelerations of 

flexible manipulator. 

( ) ( ) ( ), ( 1,..., ); ( ) ( 1,..., )R

ai ai i ej n jq t q t y t i n q t y j m+ + = = =    (59) 

 Case 1: 2 =  

 

 

(a). Periodic vibrations of perturbed motions by 2 = . 

Case 2: 6 =  

 

(b). Periodic vibrations of perturbed motions by 6 =  

Case 3: 10 =  

 

(c). Periodic vibrations of perturbed motions by 10 =  

Figure 3.  Periodic oscillation of perturbed motions. 

B. Determining the Motion of the Operating Point E 

From the periodic oscillation calculated above, we can 

find the elastic displacement of the elastic beam OE : 

 1 2( , ) ( ) ( )w x t X x y t=                                   (60) 

From Eq. (60) we have the elastic displacement from 

point E: 

 
1 2( , ) ( ) ( )w l t X l y t=                             (61) 

 Then the position of the point E is given as: 

1 1( ) cos( ) ( , )sin( )R R

E a ax t l q y w l t q y= + − +           (62) 

1 1( ) sin( ) ( , )cos( )R R

E a ay t l q y w l t q y= + + +           (63) 

From there the position error of the point E is 

determined by the following formula:  

2 2( ) ( )R R

e E E E Ed x x y y= − + −                   (64) 
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Using the control parameters in Table VI, some 

simulation results of the position of point E are shown in 

Fig. 4.  

Case 1: 2 =  

 
(a) Motion graph of operating point E by 2 =  

Case 2: 6 =  

 
(b) Motion graph of operating point E by 6 =  

Case 3: 10 =  

 
(c) Motion graph of operating point E by 10 =  

Figure 4. Position of operating point E. 

In Fig. 4, the dotted lines represent the motion graph of 

operation point E when the OE link is an elastic beam, 

the dashed lines represent the motion graph of operation 

point E when the OE link is a rigid link. 

C. Calculating Inverse Dynamics of Flexible 

Manipulator 

By substituting Eqs. (60)–(63) into Eq. (16) it get the 

actuator torque of a single-link flexible manipulator: 

 

τ

2 3 2 2 2

1 11 1

1 1

2

1 11

1

1

1
( ( ) )

3

( )

2 ( ) 2 ]

os
sin

2

[ cos ( ) sin

d

E e E e a

E e

E a e e

OE a
a e

E a e a

M

J m l Al Am q m X l q q

AD m lX l q

m X l Am q q q

m glc q
g q C q

m g l q X l q q

 







=

 
+ + + + + 

 

+ +

 +
 
 + + −
 
 
+ −  

  (65) 

The actuator torque of rigid system ( )R

aτ t  is given as 

Eq.  (22). 

Using the control parameters in Table VI, some 

calculation results of actuator torque are shown in Fig. 5.  

 

(a) Actuator torque by 6 =   

 

(b) Actuator torque by 10 =  

Figure 5. Simulation results of joint torques. 

In Fig. 5, the dotted lines represent the joint torques 

when the OE link is an elastic beam, the dashed lines are 

the joint torques when the OE link is a rigid link. 

Through the graphs, we can see that when the angular 

velocity of the joint links is larger, the graph of the joint 

torques with elastic OE link is further away from the joint 

torque graph with solid link. 

V.  CONCLUSION 

In the present paper, the linearization problem of the 

equation of motion of flexible manipulator in the vicinity 

of a fundamental motion is addressed. Then an approach 
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for the computation of dynamic stability control and the 

inverse dynamics of flexible manipulators has been 

presented.   

A procedure for the optimal design of control 

parameters of the homogeneous linear differential 

equations having time-periodic coefficients is presented. 

In case the system is unstable, we need to design the 

controller for the motion of the flexible manipulator, a 

PD controller is added to stabilize the system. Then the 

optimal parameters of the PD controller are found by 

Taguchi method. The proposed approach has been 

successfully applied to a flexible manipulator.  From the 

calculation of the oscillation of the flexible manipulator, 

substituting the coordinates into the motion equation of 

flexible manipulators, an algorithm for finding the 

actuator torques of the flexible manipulator has been 

implemented. 

Through numerical simulation, the efficiency and 

usefulness of the proposed algorithm were demonstrated 

as well.  It is believed that the results of this study can be 

extended to flexible multi-link manipulators, and thus, 

can be of great importance for slewing space structures 

where the transported object is sensitive to vibrations. 
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