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Abstract—With a growth of a main stream simulation tools 

variety and virtual experiments popularity in a role of a first 

R&D stage in robotics, researchers faced a need to model 

their own robotic platforms. Edge cutting simulators for 

mobile robots, e.g., Gazebo, Webots and CoppeliaSim, 

contain a limited number of well documented robot models, 

which were constructed by robots’ manufacturers or 

associated research groups. Yet, to create a new model of a 

complex robot is not an easy task for a beginner. This 

tutorial paper describes a step-by-step process of creating of 

a new robot model in the Gazebo simulator. The process 

starts from the model construction and physics setup, and 

ends up with sensors, Robot Operating System (ROS) based 

control integration and creating a ROS-project with the 

model. The process is illustrated with an example of a 

crawler-type robot Servosila Engineer. The example is 

supplied with an open source code of the ROS-packages that 

are via a public Gitlab repository.   
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I. INTRODUCTION 

Nowadays a number of robotic applications, their 

hardware and software complexity increase every single 

day, which allows to automate dangerous and repetitive 

processes [1]. Robots plays important roles in 

manufacturing [2], entertainment [3] and service [4], 

search and rescue [5], transportation [6], human-robot 

interaction [7], medicine [8] and healthcare [9]. 

Prior to integration of new approaches and algorithms 

into control systems of real robots, typically, they are 

tested in simulators. Virtual experiments in simulators 

became a fundamental part of research activities since 

easy created and reproducible complicated physical 

setups for testing reduce valuable time and resource 

spendings. The usefulness of simulation became the 

reason for companies to create simulation models 

alongside with real robots. Unfortunately, not all 

manufacturers provide a proper simulation model for 
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their robots, if any, which forces researchers to create 

such models on their own. 

 

Figure 1. Servosila Engineer robot at Laboratory of Intelligent Robotic 
Systems, Intelligent Robotics Department, Institute of Information 
Technology and Intelligent Systems, Kazan Federal University. 

This paper presents a tutorial on creating a simulation 

model of a real (existing) robot. It contains information 

about modelling parts of the robot, shows different ways 

to cope with collision meshes problem, explains a 

procedure of controllers and sensors integration. The 

model was constructed in the Gazebo simulation 

environment and employs Robot Operating System (ROS, 

[10]) for control purposes. All modelling steps are 

illustrated using our project of Servosila Engineer 

modelling [11], [12], which is a crawler mobile robot 

(Fig.  1) produced by Russian company Servosila [13]. 

II. INSTRUMENTS 

This article presents a step-by-step simulation process 

using ROS/Gazebo environment. ROS is a broad set of 

tools and libraries packed as a framework that is used for 

robot application, both for real robots and simulations, 

which are widely used by leading robotics companies, 

e.g., such as PAL robotics [14] or Robotis [15]. Gazebo is 

a robot simulator, integrated with ROS [16]. A vast 

majority of robot simulation models and plugins with 
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ROS were created for the Gazebo simulator. RViz is used 

together with the Gazebo as a ROS visualizer for data 

that a robot receives from its sensors [17].  

To work with a 3D model, we recommend using 

Blender software [18]. It is a free 3D computer graphics 

software, which is used for modelling, animation, and 

computer games. It appears to be quite popular and useful 

for scientific research, visualization and modelling [19].  

III. CREATING A ROBOT MODEL 

Few steps should be done before creating a robot 

model. A physically realistic model construction requires 

reliable data about the robot, including dimensions of 

robot links and their weights. Another important element 

for a robot description are default hardware and software 

limits, e.g., joint limits provide information about a 

workspace of a manipulator in real life.  

A. Visual Meshes 

The first step is creating a reliable visual 3D model of 

a robot. Often, a CAD model of the robot could be 

obtained from a manufacturer as these models are used at 

robot design and production stages. Such model could be 

used as visual meshes. Otherwise, it should be created 

manually, which is a time-consuming procedure that 

requires experience and execution of a full-stack 

modelling process. Physical accuracy is ensured solely by 

a good CAD model and documentation (in the first case) 

or thorough measurements (in the second). For multiple 

reasons, it could be discovered that a manufacturers’ 

CAD model does not precisely correspond to a real robot, 

and it is a responsibility of a modelling designer to verify 

measurements and update the CAD model accordingly. 

Modelling could be done using any popular 3D engine, 

such as Maya [20], Blender [21], 3DsMax [22] etc. With 

some efforts, using an existing software, a model could 

be transferred from one file format (associated with a 

particular file extension) to another.  

B. Collision Meshes 

Calculating physics of a visual model using only its 

geometry could be quite efficient. For this reason, 

simulators require additional meshes for every link of a 

robot, called a collision mesh. It is a mesh that is 

maximally simplified relatively to a visual mesh. There 

are two methods to create the collision mesh: generating 

models from visual meshes with automatic tools or 

creating models manually. 

Automatic generation of collision meshes is an easy 

and fast solution. It suits for research teams that do not 

have a qualified 3D modelling specialist or are severely 

limited in time. There exist a large variety of graphical 

applications that provide users an ability of an automatic 

polygon decimation. In our case, Blender open-source 

solution was employed. Decimate function is released in 

Blender as one of available modifiers. First, the model is 

imported using File-Import-(type of file with your model) 

tab. Then, if the model is complicated and contains 

multiple parts, it is recommended to decide which parts 

could be deleted (for example, small-size pins, 

insignificant elements of a decor or inner elements). Each 

remaining part of the model should be supplied with a 

corresponding Decimate modifier. Modifiers appear in a 

right menu shown in the Fig. 2. Using parameters of this 

modifier the model could be significantly simplified. 

Other instruments that could be helpful for this task, are 

ProOptimizer modifier in 3DsMax or Mesh-Reduce 

option in Maya. 

 

Figure 2. List of modifier options in Blender. 

The second approach for collision meshes construction 

is a manual creation of required models. This option 

requires some expertise in 3D modelling. Creating 

collision meshes in most cases means covering a visual 

model with a new mesh while excluding small details and 

keeping only main geometry of objects. The expertise and 

experience are important in order to decide which details 

of the original model could be omitted.  

Fig. 3 demonstrates three different models. The one on 

the left is a visual model of a front sub-crawler (flipper) 

of the crawler-type robot Servosila Engineer. The others 

are collision meshes, which were created using different 

options. The one in the center was created manually [11] 

and the one on right was generated automatically [23]. 

Table I presents a comparison of the two approaches. 

When possible, we strongly recommend a manual 

modelling. 

 

Figure 3. Mesh examples of the Servosila Engineer robot’s front sub-

crawler: an original mesh (left), a simplified manually created mesh 
(center), an automatically generated mesh (right).  
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TABLE I.  CREATING COLLISION MESHES METHODS COMPARISON 

Comparation criteria 

Mode 

Manual Automatic 

Time consumption Low High 

Quality High Low (most cases) 

Optimization High Low (most cases) 

Modelling skills requirements High Low 

IV. BUILDING A ROBOT 

A. Writing Description File 

Unified Robot Description Format (URDF) is a main 

instrument for a robot description in ROS/Gazebo 

environment. One of the URDF realizations is Xacro 

(XML Macros) that became popular among users because 

of several improvements such as parametrization and 

macros. It makes a description more readable and easier 

to construct. The Xacro description could be valuable for 

a large and complicated project. Moreover, it 

significantly decreases a size of a file. 

Each element of the robot should be properly described. 

Information about links’ length and joint limits allows 

reaching a good level of similarity between a simulation 

model and its real world counterpart. A part of a XACRO 

file code1 that describes the Servosila Engineer robot is 

presented in Code 1; it contains a description of two links 

of the manipulator – a waist link (lines 1-18) and a 

shoulder (lines 28-48) link – and a shoulder joint (lines 

50-58) between them. 
1 : <!--  waist  --> 

2 : <link name="waist_link"> 

3 : <visual> 
4 : <geometry> 

5 : <mesh filename="package://(path-to-the-directory-with-visual- 
6 : meshes)/cronstain.dae"/> 

7 : </geometry> 

8 : </visual> 
9 : <collision> 

10: <geometry> 
11: <mesh filename="package://(path-to-the-directory-with-collision- 

12: meshes)/Cronstain.dae"/> 

13: </geometry> 
14: <xacro:cuboid_inertia mass="${waist_mass}" length="0.08" 

width="0.08"  
15: height="0.08"> 

16: <origin xyz="0 0 0" rpy="0 0 0"/> 

17: </xacro:cuboid_inertia> 
18: </link> 

19:  
20: <gazebo reference="waist_link"> 

21: <selfCollide>false</selfCollide> 

22: <kp>${kp}</kp> 
23: <kd>${kd}</kd> 

 
1 A full version of this file and other support files with comments to 
each command line could not be included into the paper due to space 

limitations and are available in [24] 

 

24: <mu1>100</mu1> 

25: <mu2>50</mu2> 

26: </gazebo> 
27:  

28: <!--  shoulder  --> 
29: <link name="shoulder_link"> 

30: <visual> 

31: <geometry> 
32: <mesh filename="package://(path-to-the-directory-with-visual- 

33: meshes)/shoulder.dae"/> 
34: </geometry> 

35: </visual> 

36: <collision> 
37: <geometry> 

38: <mesh filename="package://(path-to-the-directory-with-collision- 
39: meshes)/Shoulder.dae"/> 

40: </geometry> 

41: </collision> 
42: <inertial> 

43: <mass value="${shoulder_mass}"/> 
44: <origin xyz="-0.0303 -0.0001 0.1511" rpy="0 0 0"/> 

45: <inertia ixx="0.0295383" ixy="-0.0000001" ixz="-0.0004068" 

46: iyy="0.0292352" iyz="0.0000004" izz="0.0011211"/> 
47: </inertial> 

48: </link> 
49:  

50: <joint name="shoulder" type="revolute"> 

51: <parent link="waist_link"/> 
52: <child link="shoulder_link"/> 

53: <axis xyz="1 0 0"/> 
54: <dynamics friction="${friction}" damping="${damping}"/> 

55: <origin xyz="0.036 0.051 -0.07" rpy="${pi} 0 0"/> 

56: <limit lower="${shoulder_llimit}" upper="${shoulder_ulimit}" 
57: effort="${shoulder_mass * 50}" velocity="${joints_vlimit}"/> 

58: </joint> 

59:  

60: <gazebo reference="shoulder_link"> 

61: <selfCollide>false</selfCollide> 
62: <kp>${kp}</kp> 

63: <kd>${kd}</kd> 
64: <mu1>100</mu1> 

65: <mu2>50</mu2> 

66: </gazebo> 

Code 1. Code listing of the file engineer_arm.xacro. 

A description of every link of the robot contains paths 

to its visual and collision meshes and an inertial unit, 

which includes information of weight and inertia. Joints 

have information about links they connect, a rotational 

axis and an origin, friction data and limits of position and 

velocity. 

B. Setting up Inertia 

Inertias are one of the most significant parts of a robot 

link description. Incorrectly tuned inertia can make a 

model unrealistic and even destroy it. An example of 

improperly tuning of the Servosila Engineer robot inertias 

that caused incorrect model behavior after its spawning in 

a Gazebo world is shown in Fig. 4. A proper visual model 

of the robot initially appeared at a predefined height of a 

Gazebo world 3D space and under gravitation force 

glided down; upon its contact with a ground plane the 

parts of the model felt apart. 

An inertial block describes a mass of a link, its center 

of mass (6 coordinates) and a matrix of inertia tensors. 

The inertial block code example appears in Fig. 4, lines 

42–47. 
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Figure 4. The robot model felt into parts due to wrong inertia settings. 

Fig. 5 presents two attempts of setting the inertial 

block of the Servosila Engineer robot model in Gazebo. 

Properly tuned inertia should have a shape, which is 

maximally close to an object it is attached to. In Fig. 5(a) 

we can note that inertia of the robot head (magenta color) 

nearly three times exceeds the original parts of the robot 

(brown and black colors). Fig.  5(b) presents corrected 

inertial data. In addition, while setting up inertia, it is 

important to remember about weights (mass) that do not 

have visual parts; the weights should be set according to 

the real robot technical information 

There are several ways to set up inertial blocks. First of 

all, inertias could be calculated using precise 

measurements and standard formulas. This option might 

be laborious, especially for complicated models. Another 

solution is to select parameters using visualization in 

Gazebo (Fig. 6). It could be faster than the first option but 

still it takes time and optimality of this method is quite 

questionable.  

 

(a) 

 

(b)
 

Figure 5.
 

Inertial blocks for Servosila Engineer model are shown with 
magenta color.

 

 

Figure 6. Inertias option tab of View menu in Gazebo simulator. 

The third option, which we recommend, is using a 

corresponding software, e.g., MeshLab [25]. It allows to 

easily calculate inertia values within three steps: 

• Import a model using File-Import Mesh tab 

• Open a console for a log output with View-Show 

Layer Dialog 

• Calculate inertia value with option Filters-Quality 

Measure and Computations-Compute Geometric 

Measures 

Table II compares the three options of setting up 

inertial blocks by their time consumption and resulting 

quality. 

TABLE II.  INERTIA SETTING METHODS COMPARISON 

Comparison criteria 

Approach 

Inertia 
formulas 

Visual 
approximation 

Software 

Time consumption Low Low (most cases) High 

Quality High Low (most cases) High 

C. Adding ROS Controllers 

Controllers are used for moving a robot within a 

simulation. They are connected to model joints and move 

them according to given commands. Adding controllers 

contains three steps: 

1) Add transmissions to every moving joint. The trans-

mission contains information about a type of a joint, an 

interface, an actuator and a name of a joint it is connected 

to. An example of code with a transmission description is 

listed in Code 2. 
01: <transmission name="waist_shoulder_trans">  

02: <type>transmission_interface/SimpleTransmission</type>  
03: <actuator name="waist_shoulder_motor">  

04: <mechanicalReduction>1</mechanicalReduction>  

05: </actuator> 
06: <joint name="shoulder"> 

07: <hardwareInterface> 
08: hardware_interface/EffortJointInterface 

09: </hardwareInterface> 

10: </joint> 
11: </transmission> 

Code 2. Code listing of the file engineer_arm.xacro.  

2) Create a YAML file that contains parameters of the 

controllers. It contains a controller type, a joint name and 

PID parameters. An example of such description is listed 

in Code 3. 
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1: shoulder_position_controller: 

2: type: effort_controllers/JointPositionController 

3: joint: shoulder 
4: pid: {p: 100.0, i: 0.01, d: 10.0} 

Code 3. Code listing of the file engineer_control.yaml.  

3) Create a launch file for the controllers. It should 

contain a loader of a controllers’ list created in the 

previous step and a launcher of the controllers. An 

example of a launch file is listed in Code 4. 
1: <rosparam file= 

2: "$(find engineer_control)/config/engineer_control.yaml" 

command="load"/> 
3: <node name="controller_spawner" pkg="controller_manager" 

type="spawner" respawn="false" output="screen" 

args="shoulder_position_controller"/> 

Code 4. Code listing of the file engineer_control.launch.  

Finally, after launching the model and its controllers, 

several ROS-topics are required to control the robot in a 

simulated environment. For example, to control shoulder 

joint there is a topic named shoulder position controller 

(refer the code in Code 1). It works with a message of 

std/msgsFloat64 type. To send a command to the 

controller next command is used: 
rostopic pub -1 \/shoulder\_position\_controller std\_msgs\ Float64 

"data: 0.5" 

 

01: <gazebo reference="camera${number}_link"> <sensor 
type="camera" name="camera_${number}"> 

<update_rate>${fps}</update_rate> 

02: <camera name="head_${number}"> 

<horizontal_fov>1.3962634</horizontal_fov> <image> 

03: <width>${width}</width> 
04: <height>${height}</height> 

05: <format>R8G8B8</format> 
06: </image> 

07: <clip> 

08: <near>0.02</near> 
09: <far>300</far> 

10: </clip> 
11: <noise> 

12: <type>gaussian</type> 

13: <mean>0.0</mean> 
14: <stddev>0.007</stddev> 

15: </noise> 
16: </camera> 

17: <plugin name="camera${number}_controller" 

18: filename="libgazebo_ros_camera.so"> 

19: <alwaysOn>true</alwaysOn> 

20: <updateRate>0.0</updateRate> 
21: <cameraName>camera${number}</cameraName> 

22: <imageTopicName>image${number}_raw</imageTopicName> 

23: <cameraInfoTopicName>camera_info</cameraInfoTopicName> 
24: <frameName>camera${number}_link_optical</frameName>] 

25: <hackBaseline>0.0</hackBaseline> 
26: <distortionK1>0.0</distortionK1> 

27: <distortionK2>0.0</distortionK2> 

28: <distortionK3>0.0</distortionK3> 
29: <distortionT1>0.0</distortionT1> 

30: <distortionT2>0.0</distortionT2> 
31: <CxPrime>0</CxPrime> 

32: <Cx>0.0</Cx> 

33: <Cy>0.0</Cy> 
34: <focalLength>0.0</focalLength> 

35: </plugin> 

36: </sensor> 

37: </gazebo> 

Code 5. Code listing of the file engineer_arm.xacro.  

D. Adding Sensors 

Robots are typically equipped with several types of 

onboard sensors, including cameras, laser range finders 

(LRF), IMUs and others. A number of sensors already 

have simulation models for the ROS/Gazebo environment. 

Adding a sensor to a robot simulation model means 

adding it to a robot description in a XACRO or URDF 

file. Every sensor type has its own description pattern 

incapsulated into a corresponding plugin [26]. An 

example of a sensor description in Code 5 corresponds to 

a mono camera of the Servosila Engineer robot. 

An example of working sensors is demonstrated in 

Fig. 7. Data from working cameras and LRF are 

presented in RViz. LRF scan data are shown in the left 

subfigure with red dots, corresponding to a cylinder and 

couple cube obstacles of the simulated Gazebo world 

Fig.  7 (b). Visual data are captured by the four cameras 

of the robot, and a user could switch between video 

streams of the cameras by going through the 

corresponding tabs in the bottom of the camera window 

Fig. 7 (a); in the figure a dynamically updated frame from 

the right camera demonstrates the ball and the cube 

obstacles.  

 

(a)                                       (b) 

Figure 7. Example of the working cameras and the LRF in the 

simulation. b: side view of the robot and the environment in the Gazebo 
simulation. a: RViz window with data from the right camera in 

simulation; the red rectangular emphases tabs of switchable camera 
views; the yellow circle emphases LRF data that corresponds to the 

cube obstacles; the magenta circle emphases LRF data that corresponds 
to the cylinder obstacle. 

E. Project Hierarchy 

Using Robot Operating System (ROS) includes setting 

up a proper hierarchy of a newly created project. In most 

cases ROS-project is a single ROS-package or a set of 

several ROS-packages. An example of a ROS-package is 

presented in Fig. 8, which will be used in this section to 

explain the hierarchy visually. Each package contains 

source files (Fig. 8, /src block) and instructions on how to 

build a current package (CMakeList.txt) and what 

packages and dependencies the current project is using 

for compilation and running (package.xml). Source files 

could be not only source code files of the project (such 

as .cpp or .py ; in Fig. 8 they correspond to /src block) but 

also service and messages information files (.srv and .msg 

in Fig. 8 they correspond to /src and /msg blocks 

respectively), instruction for the execution files (.launch 

in Fig. 8 they correspond to /launch block) and 
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information about robot structure files (.urdf and .xacro 

in Fig. 8 they correspond to /urdf block).  

For projects with simulation model of robots there is 

already an established type of an architecture. Mostly 

such projects contain several packages. Each of them is 

responsible for different parts of the virtual model. A 

basic set of the packages is: 

• (name-of-the-robot)_description – the package 
contains main information about the model such 
as visual data and collision 3D models and 
textures, urdf and xacro files with information 
about the robot structure. In most cases this 
package also contains launch files and 
configurations for the RViz visualization.  

• (name-of-the-robot)_gazebo – the package 
consist of additional information for the 
simulation. These are world files, which set up 
simulation scene for the robot and launch files, 
which could start the simulation. 

• (name-of-the-robot)_control – the package, 

which is strongly connected to the (name-of-the-

robot)_gazebo package. It contains 

configuration files for the controllers that are 

used to perform joint movements of the robot in 

a simulated environment. 

 

 

Figure 8. Example of the hierarchy of the ROS-project. 

There are also optional packages that could be 

presented in projects with a robot virtual model, such as: 

• (name-of-the-robot)_navigation – the package that 
contains configuration files for the navigation 
stack. In most cases it has several launch files to 
perform a navigation in the simulation. Also it 
could have some source code files for custom 
navigation algorithms or add-ons for existing 
algorithms (that are already a part of ROS).     

• (name-of-the-robot)_teleop – the package contains 
launch files and (sometimes) source code that 
allows to control the virtual robot using an input 
from an operator (a keyboard, a joystick, a mouse 
etc.). In rare cases the same functionality could be 
met in (name-of-the-robot)_control package. 

•  (name-of-the-robot)_msgs – the package that can 
present any custom ROS-messages that may be 

required for further simulation. These could be 
non-standard control messages. 

• (name-of-the-robot)_viz – could be performed as a 
separated package for visualization. Mainly 
contains configuration files for the RViz 
visualization and rqt. Also it could contain launch 
files to execute RViz and rqt with presented 
configs automatically. In rare cases the same 
functions can be performed by (name-of-the-
robot)_description package. 

All of the presented above packages allow to make a 

project modular. Such approach is supposed to improve 

and easy code understanding. In case of improvements it 

becomes clear where a user could find a source code, or 

where his/her new modules should be placed. 

 In our case we needed to create only three base 

packages: engineer_description, engineer_gazebo and 

engineer_control. Creating a new package could be 

performed using next command: 

catkin_create_pkg engineer_description std_msgs rospy roscpp 

Here we should specify a name of a package (in the 

example it is engineer_description) and packages, which 

the new package will depend from (in the example case 

these are std_msgs, rospy and roscpp). 

 

Figure 9. Console output of a project compiling command (with an error 
highlighted in red color).  

This command automatically creates configurational 

files, such as CMakeList.txt and package.xml. Moreover, 

it adds all of the mentioned above dependencies into 

proper places in these files. 
 

 

Figure 10. Console output of a project compiling command. 

All of the packages should be created in /src directory 

of the ROS-workspace. After filling the new package 

with the necessary files it needed to be compiled using 

command:  

catkin_make 
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 This command should be run in the directory of the 

workspace. It will build all of the packages in the 

workspace. Most of the problems with source code and 

dependencies in it will arise at this stage.  

 
1 : <launch> 

2 : <!-- Input parameters --> 
3 : <arg name="gui" default="True"/> 

4 : <arg name="debug" default="False"/> 

5 : <arg name="paused" default="True"/> 
6 : <arg name="headless" default="False"/> 

7 : <arg name="use_sim_time" default="True"/> 
8 : <arg name="world_name"  

9 : default="$(find engineer_gazebo)/world/empty_world.world"/> 

10:  

11: <arg name="robot_namespace" default="engineer"/> 

12: <arg name="x" default="0.0"/> 
13: <arg name="y" default="0.0"/> 

14: <arg name="z" default="1.0"/> 

15: <arg name="roll" default="0"/> 
16: <arg name="pitch" default="0.0"/> 

17: <arg name="yaw" default="0.0"/> 
18:  

19: <!-- Launch Gazebo with the specified world --> 

20: <include file="$(find gazebo_ros)/launch/empty_world.launch"> 
21: <arg name="world_name" value="$(arg world_name)"/> 

22: <arg name="gui" value="$(arg gui)"/> 
23: <arg name="debug" value="$(arg debug)"/> 

24: <arg name="paused" value="$(arg paused)"/> 

25: <arg name="headless" value="$(arg headless)"/> 
26: <arg name="use_sim_time" value="$(arg use_sim_time)"/> 

27: </include> 
28:  

29: <param name="tf_prefix" value="engineer"/> 

30:  
31: <arg name="model"  

32:default="$(find 
engineer_description)/robots/engineer_default.urdf.xacro"/> 

33:  

34: <!-- Load Jackal's description --> 
35: <include  

36: file="$(find 
engineer_description)/launch/engineer_description.launch"> 

37: <arg name="model" value="$(arg model)"/> 

38: </include> 
39:  

40: <!-- Spawn robot in Gazebo --> 
41: <node name="urdf_spawner" pkg="gazebo_ros" 

type="spawn_model" 

42: args="-x $(arg x) -y $(arg y) -z $(arg z) -R $(arg roll)  
43: -P $(arg pitch) -Y $(arg yaw) -urdf -model $(arg 

robot_namespace)  
44: -param robot_description" respawn="false" output="screen"/> 

45:  

46: </launch> 

Code 6. Code listing of the file engineer_gazebo.launch. 

For example, Fig. 9 presents one of possible errors that 

may occur during project compiling. It refers a source 

code file mimic_control.cpp and points at a problem with 

a variable (subscriber1), which was not initialized. It also 

suggests a way to fix this problem by renaming a 

problematic variable into another one within the same file 

(subscriber2), which was successfully initialized. When 

no errors appear, a successful build will reach 100 

percent (Fig. 10). 

V. SIMULATION LAUNCH 

The example of the launch file for the controllers was 

already shown in Code 4. As a first step, the simulation is 

started and the model is spawned. Only after that it is 

possible to launch the created controller. To start the 

simulation and spawn the model, a new launch file is 

created; Code 6 demonstrates a listing of such launch file. 

The launch file performs the following actions: 

1. Initialize several parameters for the simulation 

(Lines 3–9), such as options if it needs to launch a 

graphic user interface for the simulation (Line 3) 

or if it is necessary to pause the simulation at the 

start (Line 5). Also they specify a position and an 

orientation of the robot at the beginning (Lines 

12-17). 

2. Launch the Gazebo simulator with the created 

parameters (Lines 20–27). 

3. Introduce tf_prefix that will be a namespace for 

the robot (Line 29). 

4. Initialize an argument which, contains a path to 

the description of the robot (Lines 31–32). 

5. Launch a loader for the description of the robot 

(Lines 35–38) so that in the future it could be 

easier to launch the visualization in RViz or rqt. 

6. Spawn the robot in the simulated environment in 

a specified position and orientation and with a 

specific namespace using urdf_spawner (Lines 

41–44). 

To decrease a number of launchers for a manual 

execution, a launch of the controllers could be added in 

the end of the launch file (presented in Code 6). It could 

be added using a part of the code that is presented in 

Code 7. 

<include file="$(find 
engineer_control)/launch/engineer_control_all.launch"> 

<arg name="robot_namespace" value="$(arg robot_namespace)"/> 

Code 7. A part of the code, which allows to call an existing launch file 
from another launch file. 

The last step is launching the created file. It could be 

performed using next command: 

roslaunch engineer_gazebo engineer_gazebo.launch 

Before launching this command, it is necessary to 

ensure that the project was successfully compiled using 

the previously shown command, and then all compiled 

packages were loaded using the next command: 

source devel/setup.bash 

So that roslaunch command will be able to locate the 

previously created launch. 

As a result, the Gazebo simulator starts and several 

seconds later a widow of the simulator appears. The 

window contains a created environment. The virtual 

model of the described in urdf file robot appears in the 

viewport (an example is shown in Fig. 7).  

VI. CONCLUSIONS 

This paper presented a step-by-step tutorial that 
explains a construction of a virtual model for a mobile 
robot within the Gazebo simulator using Robot Operating 
System (ROS). It described an entire process that starts 
from a visual model construction and physics setup, and 

International Journal of Mechanical Engineering and Robotics Research Vol. 12, No. 4, July 2023

198



ends up with sensors setup, ROS-based control 
integration and creating a ROS-project with the model. 
Information about hierarchy of different ROS-packages 
and stages of execution is demonstrated as a part of the 
project. The process is illustrated with an example of a 
crawler-type robot Servosila Engineer modelling. 
Examples of software implementation with code, detailed 
comments, explanations and corresponding video files are 
available via Gitlab as open source supporting files of the 
paper 
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