
How to Create a New Model of a Mobile Robot

in ROS/Gazebo Environment: An Extended

Tutorial

Alexandra Dobrokvashina 1*, Roman Lavrenov 1, Evgeni Magid 1, 2, Yang Bai 3, and Mikhail Svinin 3

1 Intelligent Robotics Department, Kazan Federal University, Kazan, Russia; Email: lavrenov@it.kfu.ru (R.L.)
2 HSE University, Moscow, Russia; Email: magid@it.kfu.ru (E.M.)

3 Information Science and Engineering Department, Ritsumeikan University, Kyoto, Japan;

Email: {yangbai, svinin}@fc.ritsumei.ac.jp (Y.B., M.S.)

*Correspondence: dobrokvashina@it.kfu.ru (A.D.)

Abstract—With a growth of a main stream simulation tools

variety and virtual experiments popularity in a role of a first

R&D stage in robotics, researchers faced a need to model

their own robotic platforms. Edge cutting simulators for

mobile robots, e.g., Gazebo, Webots and CoppeliaSim,

contain a limited number of well documented robot models,

which were constructed by robots’ manufacturers or

associated research groups. Yet, to create a new model of a

complex robot is not an easy task for a beginner. This

tutorial paper describes a step-by-step process of creating of

a new robot model in the Gazebo simulator. The process

starts from the model construction and physics setup, and

ends up with sensors, Robot Operating System (ROS) based

control integration and creating a ROS-project with the

model. The process is illustrated with an example of a

crawler-type robot Servosila Engineer. The example is

supplied with an open source code of the ROS-packages that

are via a public Gitlab repository.

Keywords—modelling, simulation, Gazebo, ROS, tutorial

I. INTRODUCTION

Nowadays a number of robotic applications, their

hardware and software complexity increase every single

day, which allows to automate dangerous and repetitive

processes [1]. Robots plays important roles in

manufacturing [2], entertainment [3] and service [4],

search and rescue [5], transportation [6], human-robot

interaction [7], medicine [8] and healthcare [9].

Prior to integration of new approaches and algorithms

into control systems of real robots, typically, they are

tested in simulators. Virtual experiments in simulators

became a fundamental part of research activities since

easy created and reproducible complicated physical

setups for testing reduce valuable time and resource

spendings. The usefulness of simulation became the

reason for companies to create simulation models

alongside with real robots. Unfortunately, not all

manufacturers provide a proper simulation model for

 Manuscript received October 27, 2022; revised December 14, 2022;

accepted March 24, 2023.

their robots, if any, which forces researchers to create

such models on their own.

Figure 1. Servosila Engineer robot at Laboratory of Intelligent Robotic
Systems, Intelligent Robotics Department, Institute of Information
Technology and Intelligent Systems, Kazan Federal University.

This paper presents a tutorial on creating a simulation

model of a real (existing) robot. It contains information

about modelling parts of the robot, shows different ways

to cope with collision meshes problem, explains a

procedure of controllers and sensors integration. The

model was constructed in the Gazebo simulation

environment and employs Robot Operating System (ROS,

[10]) for control purposes. All modelling steps are

illustrated using our project of Servosila Engineer

modelling [11], [12], which is a crawler mobile robot

(Fig. 1) produced by Russian company Servosila [13].

II. INSTRUMENTS

This article presents a step-by-step simulation process

using ROS/Gazebo environment. ROS is a broad set of

tools and libraries packed as a framework that is used for

robot application, both for real robots and simulations,

which are widely used by leading robotics companies,

e.g., such as PAL robotics [14] or Robotis [15]. Gazebo is

a robot simulator, integrated with ROS [16]. A vast

majority of robot simulation models and plugins with

International Journal of Mechanical Engineering and Robotics Research Vol. 12, No. 4, July 2023

192doi: 10.18178/ijmerr.12.4.192-199

ROS were created for the Gazebo simulator. RViz is used

together with the Gazebo as a ROS visualizer for data

that a robot receives from its sensors [17].

To work with a 3D model, we recommend using

Blender software [18]. It is a free 3D computer graphics

software, which is used for modelling, animation, and

computer games. It appears to be quite popular and useful

for scientific research, visualization and modelling [19].

III. CREATING A ROBOT MODEL

Few steps should be done before creating a robot

model. A physically realistic model construction requires

reliable data about the robot, including dimensions of

robot links and their weights. Another important element

for a robot description are default hardware and software

limits, e.g., joint limits provide information about a

workspace of a manipulator in real life.

A. Visual Meshes

The first step is creating a reliable visual 3D model of

a robot. Often, a CAD model of the robot could be

obtained from a manufacturer as these models are used at

robot design and production stages. Such model could be

used as visual meshes. Otherwise, it should be created

manually, which is a time-consuming procedure that

requires experience and execution of a full-stack

modelling process. Physical accuracy is ensured solely by

a good CAD model and documentation (in the first case)

or thorough measurements (in the second). For multiple

reasons, it could be discovered that a manufacturers’

CAD model does not precisely correspond to a real robot,

and it is a responsibility of a modelling designer to verify

measurements and update the CAD model accordingly.

Modelling could be done using any popular 3D engine,

such as Maya [20], Blender [21], 3DsMax [22] etc. With

some efforts, using an existing software, a model could

be transferred from one file format (associated with a

particular file extension) to another.

B. Collision Meshes

Calculating physics of a visual model using only its

geometry could be quite efficient. For this reason,

simulators require additional meshes for every link of a

robot, called a collision mesh. It is a mesh that is

maximally simplified relatively to a visual mesh. There

are two methods to create the collision mesh: generating

models from visual meshes with automatic tools or

creating models manually.

Automatic generation of collision meshes is an easy

and fast solution. It suits for research teams that do not

have a qualified 3D modelling specialist or are severely

limited in time. There exist a large variety of graphical

applications that provide users an ability of an automatic

polygon decimation. In our case, Blender open-source

solution was employed. Decimate function is released in

Blender as one of available modifiers. First, the model is

imported using File-Import-(type of file with your model)

tab. Then, if the model is complicated and contains

multiple parts, it is recommended to decide which parts

could be deleted (for example, small-size pins,

insignificant elements of a decor or inner elements). Each

remaining part of the model should be supplied with a

corresponding Decimate modifier. Modifiers appear in a

right menu shown in the Fig. 2. Using parameters of this

modifier the model could be significantly simplified.

Other instruments that could be helpful for this task, are

ProOptimizer modifier in 3DsMax or Mesh-Reduce

option in Maya.

Figure 2. List of modifier options in Blender.

The second approach for collision meshes construction

is a manual creation of required models. This option

requires some expertise in 3D modelling. Creating

collision meshes in most cases means covering a visual

model with a new mesh while excluding small details and

keeping only main geometry of objects. The expertise and

experience are important in order to decide which details

of the original model could be omitted.

Fig. 3 demonstrates three different models. The one on

the left is a visual model of a front sub-crawler (flipper)

of the crawler-type robot Servosila Engineer. The others

are collision meshes, which were created using different

options. The one in the center was created manually [11]

and the one on right was generated automatically [23].

Table I presents a comparison of the two approaches.

When possible, we strongly recommend a manual

modelling.

Figure 3. Mesh examples of the Servosila Engineer robot’s front sub-

crawler: an original mesh (left), a simplified manually created mesh
(center), an automatically generated mesh (right).

International Journal of Mechanical Engineering and Robotics Research Vol. 12, No. 4, July 2023

193

TABLE I. CREATING COLLISION MESHES METHODS COMPARISON

Comparation criteria

Mode

Manual Automatic

Time consumption Low High

Quality High Low (most cases)

Optimization High Low (most cases)

Modelling skills requirements High Low

IV. BUILDING A ROBOT

A. Writing Description File

Unified Robot Description Format (URDF) is a main

instrument for a robot description in ROS/Gazebo

environment. One of the URDF realizations is Xacro

(XML Macros) that became popular among users because

of several improvements such as parametrization and

macros. It makes a description more readable and easier

to construct. The Xacro description could be valuable for

a large and complicated project. Moreover, it

significantly decreases a size of a file.

Each element of the robot should be properly described.

Information about links’ length and joint limits allows

reaching a good level of similarity between a simulation

model and its real world counterpart. A part of a XACRO

file code1 that describes the Servosila Engineer robot is

presented in Code 1; it contains a description of two links

of the manipulator – a waist link (lines 1-18) and a

shoulder (lines 28-48) link – and a shoulder joint (lines

50-58) between them.
1 : <!-- waist -->

2 : <link name="waist_link">

3 : <visual>
4 : <geometry>

5 : <mesh filename="package://(path-to-the-directory-with-visual-
6 : meshes)/cronstain.dae"/>

7 : </geometry>

8 : </visual>
9 : <collision>

10: <geometry>
11: <mesh filename="package://(path-to-the-directory-with-collision-

12: meshes)/Cronstain.dae"/>

13: </geometry>
14: <xacro:cuboid_inertia mass="${waist_mass}" length="0.08"

width="0.08"
15: height="0.08">

16: <origin xyz="0 0 0" rpy="0 0 0"/>

17: </xacro:cuboid_inertia>
18: </link>

19:
20: <gazebo reference="waist_link">

21: <selfCollide>false</selfCollide>

22: <kp>${kp}</kp>
23: <kd>${kd}</kd>

1 A full version of this file and other support files with comments to
each command line could not be included into the paper due to space

limitations and are available in [24]

24: <mu1>100</mu1>

25: <mu2>50</mu2>

26: </gazebo>
27:

28: <!-- shoulder -->
29: <link name="shoulder_link">

30: <visual>

31: <geometry>
32: <mesh filename="package://(path-to-the-directory-with-visual-

33: meshes)/shoulder.dae"/>
34: </geometry>

35: </visual>

36: <collision>
37: <geometry>

38: <mesh filename="package://(path-to-the-directory-with-collision-
39: meshes)/Shoulder.dae"/>

40: </geometry>

41: </collision>
42: <inertial>

43: <mass value="${shoulder_mass}"/>
44: <origin xyz="-0.0303 -0.0001 0.1511" rpy="0 0 0"/>

45: <inertia ixx="0.0295383" ixy="-0.0000001" ixz="-0.0004068"

46: iyy="0.0292352" iyz="0.0000004" izz="0.0011211"/>
47: </inertial>

48: </link>
49:

50: <joint name="shoulder" type="revolute">

51: <parent link="waist_link"/>
52: <child link="shoulder_link"/>

53: <axis xyz="1 0 0"/>
54: <dynamics friction="${friction}" damping="${damping}"/>

55: <origin xyz="0.036 0.051 -0.07" rpy="${pi} 0 0"/>

56: <limit lower="${shoulder_llimit}" upper="${shoulder_ulimit}"
57: effort="${shoulder_mass * 50}" velocity="${joints_vlimit}"/>

58: </joint>

59:

60: <gazebo reference="shoulder_link">

61: <selfCollide>false</selfCollide>
62: <kp>${kp}</kp>

63: <kd>${kd}</kd>
64: <mu1>100</mu1>

65: <mu2>50</mu2>

66: </gazebo>

Code 1. Code listing of the file engineer_arm.xacro.

A description of every link of the robot contains paths

to its visual and collision meshes and an inertial unit,

which includes information of weight and inertia. Joints

have information about links they connect, a rotational

axis and an origin, friction data and limits of position and

velocity.

B. Setting up Inertia

Inertias are one of the most significant parts of a robot

link description. Incorrectly tuned inertia can make a

model unrealistic and even destroy it. An example of

improperly tuning of the Servosila Engineer robot inertias

that caused incorrect model behavior after its spawning in

a Gazebo world is shown in Fig. 4. A proper visual model

of the robot initially appeared at a predefined height of a

Gazebo world 3D space and under gravitation force

glided down; upon its contact with a ground plane the

parts of the model felt apart.

An inertial block describes a mass of a link, its center

of mass (6 coordinates) and a matrix of inertia tensors.

The inertial block code example appears in Fig. 4, lines

42–47.

International Journal of Mechanical Engineering and Robotics Research Vol. 12, No. 4, July 2023

194

Figure 4. The robot model felt into parts due to wrong inertia settings.

Fig. 5 presents two attempts of setting the inertial

block of the Servosila Engineer robot model in Gazebo.

Properly tuned inertia should have a shape, which is

maximally close to an object it is attached to. In Fig. 5(a)

we can note that inertia of the robot head (magenta color)

nearly three times exceeds the original parts of the robot

(brown and black colors). Fig. 5(b) presents corrected

inertial data. In addition, while setting up inertia, it is

important to remember about weights (mass) that do not

have visual parts; the weights should be set according to

the real robot technical information

There are several ways to set up inertial blocks. First of

all, inertias could be calculated using precise

measurements and standard formulas. This option might

be laborious, especially for complicated models. Another

solution is to select parameters using visualization in

Gazebo (Fig. 6). It could be faster than the first option but

still it takes time and optimality of this method is quite

questionable.

(a)

(b)

Figure 5.

Inertial blocks for Servosila Engineer model are shown with
magenta color.

Figure 6. Inertias option tab of View menu in Gazebo simulator.

The third option, which we recommend, is using a

corresponding software, e.g., MeshLab [25]. It allows to

easily calculate inertia values within three steps:

• Import a model using File-Import Mesh tab

• Open a console for a log output with View-Show

Layer Dialog

• Calculate inertia value with option Filters-Quality

Measure and Computations-Compute Geometric

Measures

Table II compares the three options of setting up

inertial blocks by their time consumption and resulting

quality.

TABLE II. INERTIA SETTING METHODS COMPARISON

Comparison criteria

Approach

Inertia
formulas

Visual
approximation

Software

Time consumption Low Low (most cases) High

Quality High Low (most cases) High

C. Adding ROS Controllers

Controllers are used for moving a robot within a

simulation. They are connected to model joints and move

them according to given commands. Adding controllers

contains three steps:

1) Add transmissions to every moving joint. The trans-

mission contains information about a type of a joint, an

interface, an actuator and a name of a joint it is connected

to. An example of code with a transmission description is

listed in Code 2.
01: <transmission name="waist_shoulder_trans">

02: <type>transmission_interface/SimpleTransmission</type>
03: <actuator name="waist_shoulder_motor">

04: <mechanicalReduction>1</mechanicalReduction>

05: </actuator>
06: <joint name="shoulder">

07: <hardwareInterface>
08: hardware_interface/EffortJointInterface

09: </hardwareInterface>

10: </joint>
11: </transmission>

Code 2. Code listing of the file engineer_arm.xacro.

2) Create a YAML file that contains parameters of the

controllers. It contains a controller type, a joint name and

PID parameters. An example of such description is listed

in Code 3.

International Journal of Mechanical Engineering and Robotics Research Vol. 12, No. 4, July 2023

195

1: shoulder_position_controller:

2: type: effort_controllers/JointPositionController

3: joint: shoulder
4: pid: {p: 100.0, i: 0.01, d: 10.0}

Code 3. Code listing of the file engineer_control.yaml.

3) Create a launch file for the controllers. It should

contain a loader of a controllers’ list created in the

previous step and a launcher of the controllers. An

example of a launch file is listed in Code 4.
1: <rosparam file=

2: "$(find engineer_control)/config/engineer_control.yaml"

command="load"/>
3: <node name="controller_spawner" pkg="controller_manager"

type="spawner" respawn="false" output="screen"

args="shoulder_position_controller"/>

Code 4. Code listing of the file engineer_control.launch.

Finally, after launching the model and its controllers,

several ROS-topics are required to control the robot in a

simulated environment. For example, to control shoulder

joint there is a topic named shoulder position controller

(refer the code in Code 1). It works with a message of

std/msgsFloat64 type. To send a command to the

controller next command is used:
rostopic pub -1 \/shoulder_position_controller std_msgs\ Float64

"data: 0.5"

01: <gazebo reference="camera${number}_link"> <sensor
type="camera" name="camera_${number}">

<update_rate>${fps}</update_rate>

02: <camera name="head_${number}">

<horizontal_fov>1.3962634</horizontal_fov> 

07: <clip>

08: <near>0.02</near>
09: <far>300</far>

10: </clip>
11: <noise>

12: <type>gaussian</type>

13: <mean>0.0</mean>
14: <stddev>0.007</stddev>

15: </noise>
16: </camera>

17: <plugin name="camera${number}_controller"

18: filename="libgazebo_ros_camera.so">

19: <alwaysOn>true</alwaysOn>

20: <updateRate>0.0</updateRate>
21: <cameraName>camera${number}</cameraName>

22: <imageTopicName>image${number}_raw</imageTopicName>

23: <cameraInfoTopicName>camera_info</cameraInfoTopicName>
24: <frameName>camera${number}_link_optical</frameName>]

25: <hackBaseline>0.0</hackBaseline>
26: <distortionK1>0.0</distortionK1>

27: <distortionK2>0.0</distortionK2>

28: <distortionK3>0.0</distortionK3>
29: <distortionT1>0.0</distortionT1>

30: <distortionT2>0.0</distortionT2>
31: <CxPrime>0</CxPrime>

32: <Cx>0.0</Cx>

33: <Cy>0.0</Cy>
34: <focalLength>0.0</focalLength>

35: </plugin>

36: </sensor>

37: </gazebo>

Code 5. Code listing of the file engineer_arm.xacro.

D. Adding Sensors

Robots are typically equipped with several types of

onboard sensors, including cameras, laser range finders

(LRF), IMUs and others. A number of sensors already

have simulation models for the ROS/Gazebo environment.

Adding a sensor to a robot simulation model means

adding it to a robot description in a XACRO or URDF

file. Every sensor type has its own description pattern

incapsulated into a corresponding plugin [26]. An

example of a sensor description in Code 5 corresponds to

a mono camera of the Servosila Engineer robot.

An example of working sensors is demonstrated in

Fig. 7. Data from working cameras and LRF are

presented in RViz. LRF scan data are shown in the left

subfigure with red dots, corresponding to a cylinder and

couple cube obstacles of the simulated Gazebo world

Fig. 7 (b). Visual data are captured by the four cameras

of the robot, and a user could switch between video

streams of the cameras by going through the

corresponding tabs in the bottom of the camera window

Fig. 7 (a); in the figure a dynamically updated frame from

the right camera demonstrates the ball and the cube

obstacles.

(a) (b)

Figure 7. Example of the working cameras and the LRF in the

simulation. b: side view of the robot and the environment in the Gazebo
simulation. a: RViz window with data from the right camera in

simulation; the red rectangular emphases tabs of switchable camera
views; the yellow circle emphases LRF data that corresponds to the

cube obstacles; the magenta circle emphases LRF data that corresponds
to the cylinder obstacle.

E. Project Hierarchy

Using Robot Operating System (ROS) includes setting

up a proper hierarchy of a newly created project. In most

cases ROS-project is a single ROS-package or a set of

several ROS-packages. An example of a ROS-package is

presented in Fig. 8, which will be used in this section to

explain the hierarchy visually. Each package contains

source files (Fig. 8, /src block) and instructions on how to

build a current package (CMakeList.txt) and what

packages and dependencies the current project is using

for compilation and running (package.xml). Source files

could be not only source code files of the project (such

as .cpp or .py ; in Fig. 8 they correspond to /src block) but

also service and messages information files (.srv and .msg

in Fig. 8 they correspond to /src and /msg blocks

respectively), instruction for the execution files (.launch

in Fig. 8 they correspond to /launch block) and

International Journal of Mechanical Engineering and Robotics Research Vol. 12, No. 4, July 2023

196

information about robot structure files (.urdf and .xacro

in Fig. 8 they correspond to /urdf block).

For projects with simulation model of robots there is

already an established type of an architecture. Mostly

such projects contain several packages. Each of them is

responsible for different parts of the virtual model. A

basic set of the packages is:

• (name-of-the-robot)_description – the package
contains main information about the model such
as visual data and collision 3D models and
textures, urdf and xacro files with information
about the robot structure. In most cases this
package also contains launch files and
configurations for the RViz visualization.

• (name-of-the-robot)_gazebo – the package
consist of additional information for the
simulation. These are world files, which set up
simulation scene for the robot and launch files,
which could start the simulation.

• (name-of-the-robot)_control – the package,

which is strongly connected to the (name-of-the-

robot)_gazebo package. It contains

configuration files for the controllers that are

used to perform joint movements of the robot in

a simulated environment.

Figure 8. Example of the hierarchy of the ROS-project.

There are also optional packages that could be

presented in projects with a robot virtual model, such as:

• (name-of-the-robot)_navigation – the package that
contains configuration files for the navigation
stack. In most cases it has several launch files to
perform a navigation in the simulation. Also it
could have some source code files for custom
navigation algorithms or add-ons for existing
algorithms (that are already a part of ROS).

• (name-of-the-robot)_teleop – the package contains
launch files and (sometimes) source code that
allows to control the virtual robot using an input
from an operator (a keyboard, a joystick, a mouse
etc.). In rare cases the same functionality could be
met in (name-of-the-robot)_control package.

• (name-of-the-robot)_msgs – the package that can
present any custom ROS-messages that may be

required for further simulation. These could be
non-standard control messages.

• (name-of-the-robot)_viz – could be performed as a
separated package for visualization. Mainly
contains configuration files for the RViz
visualization and rqt. Also it could contain launch
files to execute RViz and rqt with presented
configs automatically. In rare cases the same
functions can be performed by (name-of-the-
robot)_description package.

All of the presented above packages allow to make a

project modular. Such approach is supposed to improve

and easy code understanding. In case of improvements it

becomes clear where a user could find a source code, or

where his/her new modules should be placed.

 In our case we needed to create only three base

packages: engineer_description, engineer_gazebo and

engineer_control. Creating a new package could be

performed using next command:

catkin_create_pkg engineer_description std_msgs rospy roscpp

Here we should specify a name of a package (in the

example it is engineer_description) and packages, which

the new package will depend from (in the example case

these are std_msgs, rospy and roscpp).

Figure 9. Console output of a project compiling command (with an error
highlighted in red color).

This command automatically creates configurational

files, such as CMakeList.txt and package.xml. Moreover,

it adds all of the mentioned above dependencies into

proper places in these files.

Figure 10. Console output of a project compiling command.

All of the packages should be created in /src directory

of the ROS-workspace. After filling the new package

with the necessary files it needed to be compiled using

command:

catkin_make

International Journal of Mechanical Engineering and Robotics Research Vol. 12, No. 4, July 2023

197

 This command should be run in the directory of the

workspace. It will build all of the packages in the

workspace. Most of the problems with source code and

dependencies in it will arise at this stage.

1 : <launch>

2 : <!-- Input parameters -->
3 : <arg name="gui" default="True"/>

4 : <arg name="debug" default="False"/>

5 : <arg name="paused" default="True"/>
6 : <arg name="headless" default="False"/>

7 : <arg name="use_sim_time" default="True"/>
8 : <arg name="world_name"

9 : default="$(find engineer_gazebo)/world/empty_world.world"/>

10:

11: <arg name="robot_namespace" default="engineer"/>

12: <arg name="x" default="0.0"/>
13: <arg name="y" default="0.0"/>

14: <arg name="z" default="1.0"/>

15: <arg name="roll" default="0"/>
16: <arg name="pitch" default="0.0"/>

17: <arg name="yaw" default="0.0"/>
18:

19: <!-- Launch Gazebo with the specified world -->

20: <include file="$(find gazebo_ros)/launch/empty_world.launch">
21: <arg name="world_name" value="$(arg world_name)"/>

22: <arg name="gui" value="$(arg gui)"/>
23: <arg name="debug" value="$(arg debug)"/>

24: <arg name="paused" value="$(arg paused)"/>

25: <arg name="headless" value="$(arg headless)"/>
26: <arg name="use_sim_time" value="$(arg use_sim_time)"/>

27: </include>
28:

29: <param name="tf_prefix" value="engineer"/>

30:
31: <arg name="model"

32:default="$(find
engineer_description)/robots/engineer_default.urdf.xacro"/>

33:

34: <!-- Load Jackal's description -->
35: <include

36: file="$(find
engineer_description)/launch/engineer_description.launch">

37: <arg name="model" value="$(arg model)"/>

38: </include>
39:

40: <!-- Spawn robot in Gazebo -->
41: <node name="urdf_spawner" pkg="gazebo_ros"

type="spawn_model"

42: args="-x $(arg x) -y $(arg y) -z $(arg z) -R $(arg roll)
43: -P $(arg pitch) -Y $(arg yaw) -urdf -model $(arg

robot_namespace)
44: -param robot_description" respawn="false" output="screen"/>

45:

46: </launch>

Code 6. Code listing of the file engineer_gazebo.launch.

For example, Fig. 9 presents one of possible errors that

may occur during project compiling. It refers a source

code file mimic_control.cpp and points at a problem with

a variable (subscriber1), which was not initialized. It also

suggests a way to fix this problem by renaming a

problematic variable into another one within the same file

(subscriber2), which was successfully initialized. When

no errors appear, a successful build will reach 100

percent (Fig. 10).

V. SIMULATION LAUNCH

The example of the launch file for the controllers was

already shown in Code 4. As a first step, the simulation is

started and the model is spawned. Only after that it is

possible to launch the created controller. To start the

simulation and spawn the model, a new launch file is

created; Code 6 demonstrates a listing of such launch file.

The launch file performs the following actions:

1. Initialize several parameters for the simulation

(Lines 3–9), such as options if it needs to launch a

graphic user interface for the simulation (Line 3)

or if it is necessary to pause the simulation at the

start (Line 5). Also they specify a position and an

orientation of the robot at the beginning (Lines

12-17).

2. Launch the Gazebo simulator with the created

parameters (Lines 20–27).

3. Introduce tf_prefix that will be a namespace for

the robot (Line 29).

4. Initialize an argument which, contains a path to

the description of the robot (Lines 31–32).

5. Launch a loader for the description of the robot

(Lines 35–38) so that in the future it could be

easier to launch the visualization in RViz or rqt.

6. Spawn the robot in the simulated environment in

a specified position and orientation and with a

specific namespace using urdf_spawner (Lines

41–44).

To decrease a number of launchers for a manual

execution, a launch of the controllers could be added in

the end of the launch file (presented in Code 6). It could

be added using a part of the code that is presented in

Code 7.

<include file="$(find
engineer_control)/launch/engineer_control_all.launch">

<arg name="robot_namespace" value="$(arg robot_namespace)"/>

Code 7. A part of the code, which allows to call an existing launch file
from another launch file.

The last step is launching the created file. It could be

performed using next command:

roslaunch engineer_gazebo engineer_gazebo.launch

Before launching this command, it is necessary to

ensure that the project was successfully compiled using

the previously shown command, and then all compiled

packages were loaded using the next command:

source devel/setup.bash

So that roslaunch command will be able to locate the

previously created launch.

As a result, the Gazebo simulator starts and several

seconds later a widow of the simulator appears. The

window contains a created environment. The virtual

model of the described in urdf file robot appears in the

viewport (an example is shown in Fig. 7).

VI. CONCLUSIONS

This paper presented a step-by-step tutorial that
explains a construction of a virtual model for a mobile
robot within the Gazebo simulator using Robot Operating
System (ROS). It described an entire process that starts
from a visual model construction and physics setup, and

International Journal of Mechanical Engineering and Robotics Research Vol. 12, No. 4, July 2023

198

ends up with sensors setup, ROS-based control
integration and creating a ROS-project with the model.
Information about hierarchy of different ROS-packages
and stages of execution is demonstrated as a part of the
project. The process is illustrated with an example of a
crawler-type robot Servosila Engineer modelling.
Examples of software implementation with code, detailed
comments, explanations and corresponding video files are
available via Gitlab as open source supporting files of the
paper

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

AD conducted the research, modelling and
programming; RL conducted programming; EM
supervised the research and wrote the paper; YB
validated the models; MS performed existing solutions
analysis; all authors had approved the final version.

FUNDING

The reported study was funded by the Russian Science
Foundation (RSF) and the Cabinet of Ministers of the
Republic of Tatarstan according to the research project
No. 22-21-20033.

REFERENCES

[1] S. Smys and G. Ranganathan, “Robot assisted sensing control and
manufacture in automobile industry,” Journal of ISMAC, vol. 1,

no. 03, pp. 180–187, 2019.

[2] V. Voronin, M. Zhdanova, E. Semenishchev, A. Zelenskii, Y. Cen,
and S. Agaian, “Action recognition for the robotics and

manufacturing automation using 3-d binary micro-block
difference,” Int J Adv Manuf Techno, no. 17, pp. 2319–2330, 2021.

[3] E. A. Martinez-Garcia, O. Akihisa et al., “Crowding and guiding

groups of humans by teams of mobile robots,” IEEE Workshop on
Advanced Robotics and Its Social Impacts, pp. 91–96, 2005.

[4] D. Ryumin, I. Kagirov, A. Axyonov, N. Pavlyuk, A. Saveliev, I.
Kipyatkova, M. Zelezny, I. Mporas, and A. Karpov, “A

multimodal user interface for an assistive robotic shopping cart,”

Electronics, vol. 9, no. 12, p 2093, 2020.
[5] R. R. Murphy, “Rescue robotics for homeland security,”

Communications of the ACM, vol. 47, no. 3, pp. 66–68, 2004.

[6] D. Koung, O. Kermorgant, I. Fantoni, and L. Belouaer,

“Cooperative multi-robot object transportation system based on

hierarchical quadratic programming,” IEEE Robotics and
Automation Letters, vol. 6, no. 4, pp. 6466-6472, 2021.

[7] E. Chebotareva, R. Safin, K. H. Hsia, A. Carballo, and E. Magid,
“Person-following algorithm based on laser range finder and

monocular camera data fusion for a wheeled autonomous mobile

robot,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), no. 12336, pp. 21-33, 2020.
[8] E. Magid, A. Zakiev, T. Tsoy, R. Lavrenov, and A. Rizvanov,

“Automating pandemic mitigation,” Advanced Robotics, vol. 35,

no. 9, pp. 572–589, 2021.

[9] D. Kolpashchikov, O. Gerget, and R. Meshcheryakov, “Robotics

in healthcare,” Handbook of Artificial Intelligence in Healthcare,

Springer, pp. 281–306, 2022.
[10] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R.

Wheeler, A. Y. Ng et al., “Ros: an open-source robot operating
system,” in Proc. ICRA Workshop on Open Source Software, vol.

3, no. 3.2. Kobe, Japan, p. 5, 2009.

[11] A. Dobrokvashina, R. Lavrenov, E. A. Martinez-Garcia, and Y.
Bai, “Improving model of crawler robot Servosila Engineer for

simulation in ROS/Gazebo,” in Proc. 2020 13th International
Conference on Developments in eSystems Engineering (DeSE),

IEEE, 2020, pp. 212–217.

[12] A. Dobrokvashina, R. Lavrenov, T. Tsoy, E. A. Martinez-Garcia,
and Y. Bai, “Navigation stack for the crawler robot Servosila

Engineer,” in Proc. 2021 IEEE 16th Conference on Industrial
Electronics and Applications (ICIEA), pp. 1907–1912, 2021.

[13] “Servosila official site,” [Online]. Available:

https://www.servosila.com/en/index. shtml, accessed 30-March-
2020].

[14] J. Pages, L. Marchionni, and F. Ferro, “Tiago: the modular robot
that adapts to different research needs,” in Proc. International

Workshop on Robot Modularity, IROS, 2016.

[15] C. N. Thai, “Robotis’ robot systems,” Exploring Robotics with
ROBOTIS Systems, Springer, pp. 5–21, 2017.

[16] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in Proc. IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2004,

pp. 2149–2154.
[17] H. R. Kam, S. H. Lee, T. Park, and C. H. Kim, “Rviz: A toolkit for

real domain data visualization,” Telecommunication Systems, vol.
60, no. 2, pp. 337–345, 2015.

[18] J. V. Gumster, Blender for Dummies, John Wiley & Sons, 2020.

[19] B. R. Kent, 3D Scientific Visualization with Blender, Morgan &
Claypool Publishers San Rafael, CA, 2015.

[20] K. Murdock. Autodesk Maya 2019 Basics Guide. SDC

Publications. 2018.

[21] R. Hess, Blender Foundations: The Essential Guide to Learning

Blender 2.5, Routledge. 2013.
[22] S. Tickoo, Autodesk 3Ds Max 2021: A Comprehensive Guide,

Cadcim Technologies. 2020.
[23] M. Sokolov, I. Afanasyev, R. Lavrenov, A. Sagitov, L. Sabirova,

and E. Magid, “Modelling a crawler-type UGV for urban search

and rescue in Gazebo environment,” in Proc. Artificial Life and
Robotics (ICAROB), 2017, pp. 360-362.

[24] Support files for the tutorial, Laboratory of Intelligent Robotic
Systems, Intelligent Robotics Department, Institute of Information

Technology and Intelligent Systems, Kazan Federal University –

[Online]. Available:
https://gitlab.com/LIRS_Projects/public_examples/-

/tree/main/ModellingInstructionsExample
[25] P. Cignoni, G. Ranzuglia, M. Callieri, M. Corsini, F. Ganovelli, N.

Pietroni, M. Tarini, MeshLab, 2011.

[26] “Gazebo plugins in ros,” [Online]. Available:

http://gazebosim.org/tutorials?tut=ros_gzplugins, [Online;

accessed 28-March-2022].

Copyright © 2023

by the authors. This is an open access article
distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any
medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

International Journal of Mechanical Engineering and Robotics Research Vol. 12, No. 4, July 2023

199

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

