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Abstract—Today, industrial robots play an important role in 

industrial production lines. One of the most important 

problems in motion control of industrial robot systems is the 

tracking of reference motion trajectories. However, in 

designing the controller, it is difficult to build an accurate 

mathematical model for the robot. Especially in the real-

time working process, the industrial robot is always affected 

by external noise, variable load, nonlinear friction, and 

unexpected changes in model parameters. To solve this 

problem, the paper which is built a robust adaptive 

controller based on the sliding mode controller and the RBF 

neural network. In the controller, the RBF neural network 

is used to approximate the unknown dynamics and the 

adaptive update law of the parameters of the network is 

built based on Lyapunov stability theory. The results of the 

controller are verified on Matlab Simulink software and 

show good tracking and high robustness.   
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I. INTRODUCTION 

Today, industrial robots play an important role in 

industrial production lines. One of the important 

problems in motion control of industrial robot systems is 

the tracking of reference motion trajectories. Currently, 

there are many methods to build a controller for 

asymptotic tracking robot motion according to the preset 

sample signal. The basic traditional method to build a 

controller that satisfies the above requirements is gravity-

compensated PD [1]. However, during real-time work, 

industrial robots are always affected by external noise, 

load changes, nonlinear friction, unexpected changes in 

model parameters (due to loss of model), wear of 

equipment, and deviation of system specifications after a 

long working time). Therefore, the gravity compensation 

PD controller does not guarantee the control quality for 

the robot during real-time work. In order to improve 

control quality as well as limit some disadvantages of PD 

controller, adaptive controller, backstepping control, 

sliding mode control have been introduced in the 
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documents [2-4], and adaptive sliding mode control in 

works [5-9]. When the dynamics equations have 

uncertain parameters and are affected by noise, then 

robust adaptive control is included in the design [10-12]. 

Currently, intelligent controllers based on fuzzy control 

and neural networks have been widely applied in 

industrial robot control [13-20]. Fuzzy controllers are an 

effective tool for approximating nonlinear systems [13, 

14, 16, 19]. In [19], an adaptive controller based on fuzzy 

logic has been applied to control a nonlinear system with 

an uncertain structure and the presence of external noise 

in the control process. Here fuzzy logic is used to 

approximate the unknown dynamics of the nonlinear 

system. However, fuzzy controller while building control 

rules often depends on the experience of the designer. 

Documents [18] designed a robust adaptive controller 

based on the sliding mode controller and neural network 

to control industrial robots, by combining the advantages 

of the sliding mode controller and the online learning 

ability of the controller, neuron control. The results of [18] 

give good quality of tracking control, but the neural 

network only approximates the friction function and noise, 

the controller still depends on the dynamic parameter. 

From the above analysis, the article builds a robust 

adaptive controller based on the combination of the 

sliding mode controller and the RBF neural network, in 

which the controller is designed without knowing the 

robot dynamics while having to take into account both 

noise and friction factors. 

II. ROBOT DYNAMICS 

Consider the dynamics equation of an n-joint 

manipulator as Eq. (1) [21]: 

H(q)q̈ + C(q, q̇)q̇ + G(q) = τ − F(q̇) − τd  (1) 

where: The variables 𝑞, �̇�, �̈� ∈ 𝑅𝑛×1  are the position, 

speed and angular acceleration of the joints, H(q) ∈ Rn×n 

is the matrix of moments of inertia,  C(q, q̇) ∈ Rn×n is the 

matrix of centrifugal and Coriolis forces,  G(q) ∈ Rn  is 

the gravity components,  F(q̇) ∈ Rn is the friction force,  

τd is the noise, and τ is the torque acting on the joints. 

The dynamics Eq. (1) has the following properties: 
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Property 1: The matrix of moments of inertia H(q)  is 

a symmetric, positive definite matrix and there exist two 

positive numbers m1, m2 satisfying 

m1I ≤ H(q) ≤ m2I              (2) 

Property 2:  Ḣ(q) − 2C(q, q̇)  is a skewed symmetric 

matrix for any vector 𝑥: 

xT(Ḣ(q) − 2C(q, q̇))x = 0        (3) 

Property 3: The matrix 𝐶(𝑞, �̇�) is bounded, that is, for 

known 𝑐𝑏(𝑞) it exists 

‖C(q, q̇)‖ ≤ cb(q)‖q̇‖          (4) 

Property 4: Unknown noise τd  blocked,  ‖τd‖ ≤ τm 

(τm is a positive constant) 

III. CONTROLLER DESIGN 

A. Neural Network Model RBF 

RBF network can be used to folate f(x) , as described 

in Fig. 1 [22]. 
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Figure 1. Neural Network Structure RBF 

The structure of the RBF neural network consists of 3 

layers: 

-Layer 1 is the input layer including input variables 

x1, x2, ⋯ , xn 

-The second layer is the hidden layer: The output of 

the hidden layer is calculated according to the following 

formula: 

hj = exp
‖x−ci‖

2

bj
2 , j = 1,2, . . . , n             (5) 

-Layer 3 is the output layer of the neural network, 

calculated as follows: 

f(x) = WTh + ε                      (6) 

where 𝑥 is the input state of the network,  h = [hj]
T
 is the 

Gaussian function, m is the number of hidden layer 

neurons,  ci  is the center of the function,  bj  is the 

dispersion of the function,  ε is the approximate error of 

the neural network,  W = [w1,w2, . . . , wm]
T is the weight 

vector number of the RBF network. 

Here we use a neural network for approximation. 

Therefore, it will exist an optimal neuron function as 

follows: 

f(x) = W∗h + ε                         (7) 

Here: The optimal weight value is W∗ , and the 

approximate error vector is ε. 

Assumption: Approximate deviation is limited: 

‖ε‖ ≤ ε0                               (8) 

where ε0 is a positive real value. 

We use the RBF network to approximate f(x)  , we 

have: 

f̂(x) = ŴTh                           (9) 

With W̃ = W − Ŵ, ‖W‖F ≤ Wmax 

From Eq. (6) and Eq. (9), we have: 

f − f̂ = WTh + ε − ŴTh = W̃Th + ε       (10) 

From the expression 𝑓(𝑥) , the input of the RBF 

network is chosen as: 

x = [eT ėT qd
T q̇d

T q̈d
T]           (11) 

B. Controller Structure 

The multi-link robot is a MIMO nonlinear system with 

cross-interactions. Therefore, it is difficult to accurately 

determine the parameters of the industrial robot model, 

due to the complexity of determining the values of mass, 

torque as well as geometrical dimensions of the robot. In 

addition, the parameters can be changed depending on the 

working mode of the robot, so the kinetic and dynamic 

parameters of the robot are considered uncertain 

parameters. The control objective in this paper is to build 

a preset trajectory tracking controller for the uncertain 

model to ensure the closed system is stable and global 

robust, the tracking error is zero, and is not affected by 

noise. 

The controller's task is to control the movement of 

joints q(t)  following the set signal qd(t). Determine the 

tracking error as: 

  e(t) = qd(t) − q(t)                             (12) 

Then the sliding surface is selected as follows:  

s = ė +∧ e                                           (13) 

in there, ∧  is a symmetric positive definite constant 

matrix and ∧=∧T= [λ1 λ2 . . . λn]
T > 0, so we have: 

q̇ = −s + q̇d +∧ e                    (14) 

We have the tracking error kinematics [22]: 

𝐻�̇� = 𝐻(�̈�𝑑 − �̈� +∧ �̇�) = 𝐻(�̈�𝑑 +∧ �̇�) − 𝐻�̈� 
= 𝐻(�̈�𝑑 +∧ �̇�) + 𝐶�̇� + 𝐺 + 𝐹 + 𝜏𝑑 − 𝜏 
= 𝐻(�̈�𝑑 +∧ �̇�) − 𝐶𝑠 + 𝐶(�̇�𝑑 +∧ 𝑒) + 𝐺 + 𝐹 + 𝜏𝑑 − 𝜏 

= −𝐶𝑠 − 𝜏 + 𝑓 + 𝜏𝑑 (15) 

In there:  

f(x) = H(q̈d +∧ ė) + C(q̇d +∧ e) + G + F (16) 
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where f(x)  is unknown, so we need to approximate 𝑓(𝑥), 
in this paper RBF network is used to approximate f(x) . 

The controller is designed as: 

τ = f̂(x) + Kvs − v                    (17) 

where Kv is a symmetric positive definite constant matrix,  

f̂(x)   is the output of the RBF network. f̂(x)   is an 

approximation of f(x)  . The sliding mode controller is 

designed as: 

v = −(εN + bd) sgn( s)                  (18) 

In there:  ‖ε‖ ≤ εN, ‖τd‖ ≤ bd  

To reduce chattering, the function sgn( s)  is replaced 

by the function tanh( s)  (hyperbolic tangent). 
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Figure 2. Structure of robust adaptive control system based on sliding 
mode control and RBF neural network 

C. Proof of Stability 

From Eqs. (15) and (17), we have: 

𝐻�̇� = −(𝐾𝑣 + 𝐶)𝑠 + �̃�𝑇𝜑(𝑥) + (𝜀 + 𝜏𝑑) + 𝑣 =
−(𝐾𝑣 + 𝐶)𝑠 + 𝜁1                        (19) 

In which ζ
1
= W̃Tφ(x) + (ε + τd) + v (20) 

Choose the Lyapunov [22] function as: 

𝐿 =
1

2
𝑠𝑇𝐻𝑠 +

1

2
𝑡𝑟(�̃�𝑇𝐹𝑤

−1�̃�) (21) 

where 𝐻 and 𝐹 are positive matrices, we have: 

�̇� = 𝑠𝑇𝐻�̇� +
1

2
𝑠𝑇�̇�𝑠 +

1

2
𝑡𝑟 (�̃�𝑇𝐹𝑤

−1�̇̃�) (22) 

From Eq. (19) we have: 

�̇� = 𝑠𝑇𝐾𝑣 �̇� +
1

2
𝑠𝑇(�̇� − 2𝐶)𝑠 + 𝑡𝑟�̃�𝑇 (𝐹𝑤

−1�̇̃� + 𝜑𝑠𝑇) +

𝑠𝑇(𝜀 + 𝜏𝑑 + 𝑣)                      (23) 

We know that robot dynamics has the characteristic 

𝑠𝑇(�̇� − 2𝐶)𝑠 = 0 . Choose �̇̃� = 𝐹𝑤ℎ𝑠
𝑇 , that is, the 

weight update adaptive rule of the network is: 

Ẇ̂ = Fwhs
T                          (24) 

So, 

�̇� = −𝑠𝑇𝐾𝑣𝑠 + 𝑠𝑇(𝜀 + 𝜏𝑑 + 𝑣)        (25) 

Because: 

𝑠𝑇(𝜀 + 𝜏𝑑 + 𝑣) = 𝑠𝑇(𝜀 + 𝜏𝑑) + 𝑠𝑇𝑣 = 𝑠𝑇(𝜀 + 𝜏𝑑) −
‖𝑠‖(𝜀𝑁 + 𝑏𝑑) ≤ 0                      (26) 

Hence we have: �̇� ≤ −𝑠𝑇𝐾𝑣𝑠 ≤ 0 

From above analysis, we can see that RBF 

approximation error can be overcome by the robust term. 

From �̇� ≤ −𝑠𝑇𝐾𝑣𝑠 ≤ 0, we have: 

∫ �̇�𝑑𝑡 ≤ 𝜆𝑚𝑖𝑛(𝐾𝑣)
𝑡

0
∫ ‖𝑠‖𝑑𝑡
𝑡

0
         (27) 

𝐿(𝑡) − 𝐿(0) ≤ 𝜆𝑚𝑖𝑛(𝐾𝑣) ∫ ‖𝑠‖𝑑𝑡
𝑡

0
          (28) 

where 𝜆𝑚𝑖𝑛(𝐾𝑣) is the minimum eigenvalue of 𝐾𝑣. 

Then, 𝐿  is limited, 𝑠  and �̃�  are all limited, from �̇� 

expression, �̇�  is limited, and the ∫ ‖𝑠‖𝑑𝑡
∞

0
 is limited. 

From Barbalat Lemmma [23], when 𝑡 → ∞, we have 𝑠 →
∞, then 𝑒 → 0; �̇� → 0, and the convergence precision is 

related to 𝐾𝑣. 

Since 𝐿 ≥ 0; �̇� ≤ 0, 𝐿 is limited as 𝑡 → ∞; thus, Ŵ is 

limited. Since when �̇� ≡ 0 , we cannot get �̃� ≡ 0 ; Ŵ 

cannot converge to 𝑊. 

IV. SIMULATION RESULTS 

The simulation results of the controller are illustrated 

on the three degrees of freedom manipulator model, the 

manipulator model is designed on Simscape Multibody as 

shown in Fig. 3. 

 

Figure 3. Robot model by Simscape Multibody on Simulink 

The robot parameters are given in Table I. 

Simultaneously, the model of friction force and impact 

noise is simulated as follows: 

𝐹(�̇�) = 0.2 𝑠𝑔𝑛( �̇�) 
𝜏𝑑 = [0.2 𝑠𝑖𝑛( 𝑡) 0.2 𝑠𝑖𝑛( 𝑡) 0.2 𝑠𝑖𝑛( 𝑡)]𝑇  

The detailed system parameters of the three-link robot 

model are given as follows [24]: 

𝐻 = [

𝐻11 𝐻12 𝐻13

𝐻21 𝐻22 𝐻23

𝐻31 𝐻32 𝐻33

] 

𝐶 = [

𝐶11 𝐶12 𝐶13
𝐶21 𝐶22 𝐶23
𝐶31 𝐶32 𝐶33

] 

𝐺 = [

𝑔1
𝑔2
𝑔3
] 
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𝐻11 = 𝑙1
2 (
𝑚1

3
+ 𝑚2 +𝑚3) + 𝑙1𝑙2(𝑚2 + 2𝑚3)𝑐𝑜𝑠(𝑞2)

+ 𝑙2
2 (
𝑚2

3
+𝑚3) 

𝐻12 = 𝐻21 = −𝑙1𝑙2 (
𝑚2

2
+ 𝑚3) 𝑐𝑜𝑠(𝑞2) − 𝑙2

2 (
𝑚2

3
+ 𝑚3) 

𝐻13 = 𝐻23 = 𝐻31 = 𝐻32 = 0 

𝐻22 = −𝑙2
2 (
𝑚2

3
+ 𝑚3) 

𝐻33 = 𝑚3 

𝐶11 = −�̇�2(𝑚2 + 2𝑚3) 

𝐶12 = 𝐶21 = −�̇�2 (
𝑚2

2
+ 𝑚3) 

𝐶13 = 𝐶22 = 𝐶23 = 𝐶31 = 𝐶32 = 𝐶33 = 0 

𝑔1 = 𝑔2 = 𝑔3 = −𝑚3𝑔 

To verify the effectiveness of the control algorithm, we 

simulated on Matlab - Simulink software with sine 

reference trajectory. The robust, adaptive controller based 

on the proposed sliding mode controller and neural 

network (SRBF) was compared with the gravity 

compensated PD controller in the literature [1] to 

demonstrate the advantages of this method. The robot 

parameters are given in the table as follows: 

TABLE I. PARAMETERS OF THE THREE DEGREES OF FREEDOM 

MANIPULATOR MODEL 

Symbol Meaning Unit Value 

m1 Mass of link 1 kg 1.8 

m2 Mass of link 2 kg 0.5 

m3 Mass of link 3 kg 0.4 

l1 Length of link 1 m 0.7 

l2 Length of link 2 m 0.8 

l3 Length of link 3 m 0.6 

The controller is designed with: ∧= 𝑑𝑖𝑎𝑔[30,30,30], 
𝐾𝑣 = 𝑑𝑖𝑎𝑔[300,300,300], RBF neural network structure 

with the number of hidden layer neurons is 7. 

 

Figure 4. Simulation result of position tracking for joint 1 

 

Figure 5. Simulation result of position tracking for joint 2 

 

 

Figure 6. Simulation result of position tracking for joint 3 

 

Figure 7. Simulation result of position tracking error for joint 1 
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Figure 8. Simulation result of position tracking error for joint 2 

 

 

Figure 9. Simulation result of position tracking error for joint 3 

 

 

Figure 10. Simulation result of control inputs 

 

TABLE II. SIMULATION PERFORMANCE OF THE CONTROLLER 

Tracking 

error 
Joint 1 Joint 2 Joint 3 

Average 
error by 

location 

(rad) 

-7.407×10-5 -7.753×10-5 -8.033×10-5 

Average 
error by 

velocity 

(rad/s) 

1.855×10-5 1.124×10-5 2.151×10-5 

 

Above is a drawing of simulation results on the 

software. Where qd1, qd2, qd3 are the placement 

positions of joints 1, 2, 3; q1_SRBF, q2_SRBF, 

q3_SRBF are the positions of joints 1, 2, 3 using the 

proposed controller; q1_PD, q2_PD, q3_PD are the 

positions of joints using gravity compensation PD 

controller; eq1_SRBF, eq2_SRBF, eq3_SRBF are 

tracking errors using the proposed controller; eq1_PD, 

eq2_PD, eq3_PD are tracking errors using gravity 

compensated PD controller. Comparing the tracking 

errors in the robot manipulator motion compared to the 

set trajectory when using the SRBF controllers in turn, 

the PD controller can see that both controllers can 

guarantee the tracking error of the system relative to the 

set orbitals. However, there is still a difference in quality 

between the controllers in the above results, when using 

the SRBF controller, it shows that the quality of tracking 

is much better than that of the PD controller; position 

error of robot joints of SRBF controller converges faster, 

smaller and more stable than PD controller. 

Through the simulation results in Figs. 4–10, we see 

that, during the working process, the system is affected 

by noise, the change of friction or the load changes the 

designed controller still converges, ensuring ensure 

stability and robust in the working process. Moreover, by 

using sliding mode control to compensate for estimation 

error as well as in the working process the weights of the 

neural network controller are always updated 

continuously through the learning rule, so the position 

error The position of robot joints of the faster converging 

controller is smaller and more stable as shown in Table II. 

Thereby proving that the robot control quality by using 

the robust adaptive controller based on sliding mode 

control and neural network RBF has been improved. 

Thereby we can continue to research to put it into 

practice as well as apply it in practice. 

V. CONCLUSION 

The robust adaptive controller is built based on a 

sliding mode control and RBF neural network to apply 

control to industrial robots, which has achieved good 

quality of tracking control, high accuracy in the 

environment noisy working environment, and taking into 

account the friction factor without knowing the dynamics 

of the robot. The built-in controller is also proven to be 

stable throughout the working area based on Lyapunov 

stability theory. The simulation results are verified on the 

three-degree-of-freedom robot model, compared with the 

PD controller. The simulation results show that the SRBF 
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controller has good noise resistance, tracking error, and 

better stability than the PD controller. Thereby we can 

continue to research to put it into the experiment as well 

as to be applied in practice. 
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