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Abstract—The selection of appropriate levels of machining 

parameters is an important consideration that determines 

machinability or other quality measures. In this study, the 

CNC machining process was designed to optimize the effects 

of machining parameters such as feed rate, spindle speed, and 

tool life in the production of brass unions, which are 

commonly used in air conditioners. The numerical design was 

carried out using a proposed adaptive constrained response 

surface optimization model (ACRSOM). The ACRSOM's 

evolutionary operations began with the conventional 

factorial design, which was used to identify the influential 

effects of the main and some selected parameter interactions 

on transformed proportion responses. The first phase was 

used to move quickly toward the optimum with adequate 

design points, whereas the second phase was used to minimize 

the standard deviation of transformed responses under the 

desired mean target. The ACRSOM was generated in linear 

or nonlinear forms, based on either unreplicated or 

replicated designed plans, which were then combined to 

generate the new operating condition. With the optimal 

setting of 0.08 feed rate; 2,300 spindle speed and 10,000 tool 

life obtained from the proposed model, the percentage of 

defects is reduced from 0.3371 to 0.0610. Furthermore, 

process variation is greatly reduced from the previous 

operating condition.   

 

Keywords—brass union, carbide half-round drill, constrained 

response surface model, drilling process, designed 

experimental plan, proportion response  

 

I. INTRODUCTION 

The production of brass air conditioner parts is currently 

in high demand. As a result, there must be competition in 

terms of product quality and timely delivery. To dominate 
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this type of industry market, industrial factories must 

control their production for maximum efficiency and 

differentiate themselves from other production bases. All 

brass unions will be manufactured in collaboration with 

human workers using machinery with a camshaft to 

control the blade operations on CNC machines. However, 

these machines continue to cause production defects [1–2]. 

The effects of influential parameters on these CNC 

machines with camshaft operation will be the focus of this 

research. 

Response surface methodology (RSM) is widely used to 

optimize analytical procedures and monitor the impact of 

process parameters on experimental response [3–4]. RSM 

is a collection of mathematical and statistical strategies 

based on experimental data and a fitted equation [5]. It 

must describe the structure of a data set in order to make 

statistical predictions. When several process parameters 

influence an interest response or set of responses, it is 

useful [6]. The goal is to optimize all of these parameters 

at once to achieve the highest level of system reliability 

[7–8].  

It is critical to first select an experimental design that 

specifies which experiments should be carried out in the 

experimental domain under consideration. There are some 

experimental materials available for this purpose. When 

the data set lacks curvature, first-order experimental 

designs such as simplex or factorial designs can be used. 

Furthermore, the desired process response is frequently a 

proportion between 0 and 1. One of the simplest methods 

for applying specific statistical procedures to non-

normally distributed data is to transform it. Nonparametric 

statistics lack the statistical power provided by 
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transformations. The main disadvantage is that the 

transformation can be difficult to grasp at times. 

The main purpose of this research was to determine the 

best levels of process parameters for CNC machining of 

brass unions. To optimize the process parameters, an 

analytical model was created using a two-level factorial 

designed plan. The process parameters investigated in this 

study were feed, spindle speed, and tool life. Data 

transformation was performed using the standard rule of 

thumb to overcome the statistical assumptions associated 

with the proportion response. It should be used when the 

proportions are close to 0 and/or close to 1. Proportions 

close to 0 and 1 will be stretched, while those close to 0.5 

will be compressed. 

The optimal parameter levels for CNC machining of 

brass unions were determined in this work. The 

innovations in this paper are summarized below. 

1. In this paper, an adaptive constrained response 

surface optimization model (ACRSOM) of linear or 

nonlinear nature is proposed. 

2. First, the model based on the mean is used to 

determine the optimum using an unreplicated designed 

plan. 

3. The transformation is introduced to the model to take 

into account the categorical nature of the response data. 

4. Finally, the model to reduce the standard deviation is 

then incorporated within the desired response restrictions 

utilizing a replicated designed plan. 

The CNC machining process (CNCMP) is briefly 

described in the second section. The basic experimental 

design with transformed data is covered in the section 

“Related Methods.” The section “Numerical Results and 

Analysis” presents the results of the related methods. 

Finally, the section “Discussions and Conclusions” 

contains the research’s conclusions and discussions, as 

well as suggestions for future research. 

II. CNC MACHINING PROCESS (CNCMP) 

The basic structure of a CNC machine (Cincom A20) is 

made up of five functions: a driving system, a clamping 

system, a measuring system, an electrical system, and a 

control system. A transmission system controlled by a 

servo motor system and a control axis driving system 

controlled by a stepping motor comprise the driving 

system. The basic operation of servo motors and stepping 

motors is the rotation of the permanent magnet rotor 

caused by blowing the coil against the stator and 

energizing the magnetic field. 

The workflow of a CNC machine is a program-

controlled operation. The program is fed into the panel, 

and the knife turret is moved in accordance with the 

program to control the operation of each type of blade. The 

main spindle and sub spindle of the knife turret will be on 

opposite sides (Fig. 1). Each piece of work begins on the 

main spindle and is then moved to the end to be turned and 

drilled on the sub spindle. 

 

Figure 1. CNCMP for brass unions  

Errors in the manufacture of brass unions can occur, 

resulting in additional flaws. These errors manifest 

themselves in various ways, resulting in a wide range of 

defective work that cannot be repaired or fixed. For this 

study, four defective brass unions are being considered 

(Fig. 2). The first flaw (No Hole) is a brass union in which 

the hole did not reach the opposite side of the workpiece, 

resulting in a blind hole that could be visually inspected. 

The second defect (Hole No-Go) of brass unions is that 

the holes are either too small or too large for the targeted 

inner diameter of 7 mm. The workpieces do not meet the 

requirements that can be read from various devices when 

measuring the hole dimensions. Brass unions, which have 

an uneven and streaked inner hole surface as well as burrs 

inside the hole and can be visually inspected, are the third 

defect (Striped Inner Hole). Finally, this defect type (Hole 

Deform) can be visually inspected if the brass unions with 

drilled holes are not round or have a different appearance 

than the sphere. 

 
Figure 2. Brass unions with four types of defects of No Hole, Hole No-

Go, Striped Inner Hole and Hole Deform 

According to the production report, the amount of defect 

due to No Hole was found to be the highest in the third 

quarter of 2022. Other defects included Hole No-Go, 

Striped Inner Hole, and Hole Deform. All of these defects, 

according to experts, are caused by the carbide half-round 

drill, so its various parameters must be considered. Square-

shaped defects, which are primarily caused by human error 

in that the workpiece is not removed from the workpiece 

container until the impact between the workpieces causes 

damage to the product's edges. This will not be considered 

in this study. 
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In this study, a CNC machine was used to drill a hole in 

the workpiece with a half-round drill blade. The procedure 

starts with a rotating workpiece holder that causes the 

workpiece to rotate at a predetermined rotational speed. 

The workpiece is then moved at a constant feed rate 

towards the blade along the horizontal axis. To achieve the 

required dimensions, the clamping system tightly clamps 

the cutting tool while only moving the vertical and depth 

axes. In the production of workpieces, ongoing half-round 

drill blades are used, and the blade will wear out after a 

certain number of workpieces, resulting in poor work [9]. 

When there is a lot of bad work, the blade is replaced. 

Feed (𝑥1), spindle speed (𝑥2), and tool life (𝑥3) are thus 

drilling process parameters that can be influenced. The 

proportion of defects will be calculated by counting the 

number of defects that occur on a daily basis and 

comparing them to the total number of pieces produced 

during the time required to study. Four types of defects 

discovered during CNCMP must be eliminated in order to 

continue improving the defect proportion of brass unions. 

The skilled worker should also be considered an 

uncontrollable variable or noise (Fig. 3) and the details of 

the Cincom A20 CNC machine is given in Table I. 

 

Figure 3. Design and noise parameters of the CNCMP 

TABLE I. CINCOM A20 AND ITS MAIN SPECIFICATIONS 

Items Details 

Maximal level of machining diameter 20mm 

Maximal level of machining length on guide-

bushing 
200 mm 

Maximal level of drilling diameter of the main 

spindle 
10 mm 

Maximal spindle speed 10,000 min-1 

Maximal level of drilling diameter in back 

machining process 
8 mm 

Maximal back spindle speed 8,000 min-1 

Spindle drive motors 2.2/3.7 kW 

Tool spindle drive motors 0.75 kW 

III. RELATED METHODS  

A. Response Transformation 

Residuals are experimental error estimates computed by 

subtracting the observed response from the estimated 

response. After estimating all unknown model parameters 

from the experimental data, it is calculated using the 

chosen model. The underlying assumption of an analysis 

of variance (ANOVA) and regression analysis is that 

residues are normally distributed and independent, with a 

mean of zero and a constant variance. 

Working in industrial plants also necessitates 

considering response data characteristics as categorical 

data, such as good work/bad work, pass/fail in proportional 

form. As a result, when using statistical methods to analyze 

data with the aforementioned characteristics, the 

probability distribution characteristics of the data between 

the theoretical model and the actual study approach are 

critical issues for an ANOVA-based statistical inference 

principle. 

Transforming data is one of the easiest techniques to use 

specific quantitative approach with data that is not 

normally distributed or in the form of a proportion or 

percentage. Transformations have the advantage of 

providing more statistical power than nonparametric 

statistics. The arcsine and logit transformations are the two 

most common methods for converting percent, proportions, 

and probabilities. Both transformations should be used 

when a number of proportions are close to 0 and/or close 

to 1. Proportions near 0 and 1 will be stretched, while those 

near 0.5 will be compressed. 

The arcsine transform is also known as the angular 

transformation. The arcsine transform equals the inverse 

sine of the proportion's square root as shown in Eq. (1).  

𝑌 = 𝑎𝑟𝑐𝑠𝑖𝑛𝑒√𝑝 (1) 

where 𝑝 is the proportion or natural response, and 𝑌 is the 

transformed or coded response. The outcome can be 

expressed in either degrees or radians. 

B. Adaptive Constrained Response Surface 

Optimization Model (ACRSOM)  

Response surface methods (RSM) employ multiple 

factors at once, each with two or more levels [10]. In 

factorial experiments, several factors are involved the 

distinguishing feature under investigation simultaneously, 

and the investigator is engaged in both the main effects and 

the interaction effects among various factors [11–12]. 

Aside from deciding which factors to use, deciding what 

levels to use is one of the most difficult decisions for RSM. 

A general rule of thumb is to space levels as far apart as 

possible in order to see and effect while not exceeding the 

operating boundaries [13]. For this study, however, the 

standard two-level factorial design was used. This 

technically implies that the variables have no relationship. 

In practice, a first-order or linear polynomial model will 

be used to generate the steepest ascent (or descent) path. 

When the lack of fit test shows that there is no significant 

effect on pure quadratic curvature, the new design points 

will be located using a preset step length from the current 

operating condition until no further development in 

response is observed. In complex problems, however, 

there are numerous associated responses. The most 

important response will be designated as the primary 

response, and the others as secondary responses [14]. Then, 

to determine preferable levels of the system’s k parameters, 

a constrained response surface optimization model 

(CRSOM) is generated. 

Engineering Process: 

CNCMP

Controllable Parameters   

Input
Defect 

Proportion

Uncontrollable Parameters

Feed Spindle Speed

Trained Inspectors

Tool Life
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Assumptions or approximations based on linear or 

nonlinear programming may also result in appropriate 

problem representations across a range of process 

parameters [15–16]. The objective and constraint 

functions in the CRSOM can be linear (Eq. (2)) or 

nonlinear (Eq. (3)), which is important for properly 

representing an application as a mathematical program at 

times. These parameter levels yield the best primary 

transformed response while meeting all secondary 

transformed response constraints. In addition, the 

proposed model includes plausible regions of influential 

parameters (𝑥𝑖 , 𝑖 = 1,2, 3 ). The terms 𝛽0 and 𝛽𝑖  are the 

parameters of the model and 𝜀𝑖𝑗  represents the 

discrepancy between true and observed achievement. 

𝑌𝑆𝐷 𝑜𝑟 𝑌𝑀 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

3

𝑖=1

+ 𝜀𝑖𝑗 

 

(2) 

𝑌𝑆𝐷 𝑜𝑟 𝑌𝑀 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

3

𝑖=1

+ 𝛽4𝑥1𝑥2 + 𝛽5𝑥1𝑥3

+ 𝛽6𝑥2𝑥3 + 𝛽7𝑥1
2 + 𝛽8𝑥2

2

+ 𝛽9𝑥3
2 + 𝜀𝑖𝑗 

 

(3) 

 

For a replicated designed plan, the CRSOM's goal is to 

generate appropriate design points without overestimation. 

A regression analysis is used to determine the CRSOM's 

standard deviation (𝑌𝑆𝐷̂) and the mean (𝑌𝑀  ̂ ) of transformed 

responses. Linear (LCRSOM) and nonlinear (NLCRSOM) 

programming models are developed in response to the 

lower (LB) and upper (UB) bounds of secondary responses 

and influential parameters (𝑋), which are as follows: 

Minimize 𝑌𝑆𝐷̂ 

Subject to 

(T-∆)  ≤ 𝑌𝑀 ̂  ≤  (T+∆)  

LB ≤ 𝑋 ≤ UB 

(4) 

 

where ∆  is the maximum deviation calculated from the 

mean of the transformed responses that is close to the 

specified target value (T).  

When there is an unreplicated designed plan, the 

CRSOM's objective (𝑌𝑀  ̂ ) will be applied without regard 

for the specified target value, as follows: 

Optimize 𝑌𝑀  ̂   

Subject to  

LB ≤ 𝑋 ≤ UB 

(5) 

 

This adaptive method iteratively provides a process for 

learning by experimenting and investigating. A search 

analysis is the first stage of the methodology. As a result, 

the research begins with a survey of a large decision space 

with numerous parameters. As needed, later iterations of 

the methodology may be more focused. The following 

steps provide a systematic overview of the general 

framework of the proposed method, which can be modified 

to meet the needs of the industrial application. 

Finding the parameters (X) and their achievable lower 

(LB) and upper bound (UB) ranges is the first step (UB). 

The second step is to transform the natural response to the 

transformed or coded response by using experimental 

design to identify parameters that meaningfully affect the 

natural response ( 𝑝 ). Third, it is an improved and 

developed model for estimating the mean ( 𝑌𝑆  ̂ ) and 

standard deviation (𝑌𝑃̂) of transformed response variables. 

Finally, using Eq. (4), determine the optimal value of the 

controllable variable (𝑋) and adjust the mean and variance. 

IV. NUMERICAL RESULTS AND ANALYSIS  

The level of a half-round drill blade's pertinent factors 

has been established by the manufacturing of brass unions. 

Recent production data indicate the following level of 

pertinent parameters for a half-round drill blade: The feed 

rate can be changed from 0.03–0.12 mm/rev in steps of 

0.01 mm/rev; the rotational speed can be changed from 

750–3000 rev/sec in steps of 50 rev/sec; and the tool life 

of the blade depends on the assessment of each machine 

engineer and has various level configurations. 

For the case study, the amount of defects produced 

during the manufacturing process is investigated using the 

binomial distribution. In order to interpret and infer the 

values, each practice uses a statistical method that is based 

on the theory and concept of the binomial distribution. By 

using the Central Limit Theorem and a larger sample size, 

the normal distribution can be used to approximate the 

binomial distribution. As a result, it is now used as a 

benchmark when determining whether to infer the ratio 

statistically. To get the most accurate factor analysis 

results, additional considerations for this study were made 

by converting the ratio. 

The numerical results of the Adaptive Constrained 

Response Surface Optimization Model (ACRSOM) are 

presented in detail in this study. The CNCMP only has one 

response for the number of defects per manufactured 

workpiece. Explicit constraints keep the parameter levels 

within their feasible ranges. The levels of the three 

influential parameters (𝑥𝑖 , 𝑖 = 1,2, 3) were optimized by 

CRSOM. As shown in Fig. 3, these parameters are feed 

(𝑥1), spindle speed (𝑥2),  and tool life (𝑥3). The completely 

randomized design is most frequently used in an ANOVA 

to monitor all process parameters from all existing design 

observations. 

The variance among designed experiments must be 

constant across all levels of treatment for an ANOVA, and 

especially for the mean comparisons. The F test's primary 

presumption, and if it is violated, no results from the 

ANOVA should be drawn. This assumption strongly 

affects the F test because the mean square error (MSE), the 

denominator, is the average within-treatment variance. 

Assuming, on average, that the real values of all within-

treatment variances are equal. The average variance is not 

enough to compare means if the deviations of different 

treatment levels diverge. 

There are two options if the data indicates that the 

assumptions for an ANOVA cannot be valid. The first 

choice is to conduct a different test, like a non-parametric 

test, which does not require the rejected premises. The 

second option is to ensure the transformed response 

complies with the analysis' generalizations by 
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appropriately transforming the response. But this study 

went with option two. 

As advised by the literature, the pilot experiment in this 

study used the arcsine transformation on the percentage of 

defect proportion data. By expanding both tails and 

contracting the middle, it sought to break the relationship 

between variance and the mean. In experiments with a 

single replicate, there aren't enough observations to 

calculate the error sum of squares. The ANOVA table 

needed two more runs because there were ten design points 

with two levels of three parameters. 

One way to determine the normality assumption on both 

natural and transformed responses is to look at the normal 

probability plot of effects based on the current operating 

condition or the first scenario (S1) of 0.06 feed rate; 2,650 

spindle speed and 20,000 tool life. The transformed data 

meet the assumptions better than the natural data, leading 

to a much stronger P-value of 0.667, despite the fact that 

the data do not contradict any of the assumptions. The 

improvement in the data is demonstrated by the plots of 

percentage versus percentage (Fig. 4(a)) and transformed 

percentage (Fig. 4(b)) of defect proportions. 

 

 
(a) 

 

 
(b) 

Figure 4. Normal probability plot of the percentage of defect proportion 
(a) and the transformed percentage of defect proportion (b) 

At the 25% level of significance, the arcsine 

transformation used to analyze this data revealed 

significant main effects of spindle speed and tool life as 

well as the interaction effect of feed and spindle speed 

(Table II). The ANOVA results of arcsine-transformed 

data are not necessarily different from those of natural data, 

though, at the level of the overall ANOVA F test. 

TABLE II. ANOVA TABLE FOR DETERMINING THE SIGNIFICANT 

PARAMETERS INCLUDING THEIR INTERACTIONS ON THE SECOND 

SCENARIO 

Source of 

Variation 

Degree of 
Freedom 

(DF) 

Sum 
Squares 

(SS) 

Mean 
Squares 

(MS) 

F-

Value 

P-

Value 

Model 7 0.08224 0.011749 3.56 0.237 

Linear 3 0.074808 0.024936 7.55 0.119 

𝑥1 1 0.049331 0.049331 14.94 0.061 

𝑥2 1 0.004722 0.004722 1.43 0.354 

𝑥3 1 0.015177 0.015177 4.6 0.165 

2-Way 

Interactions 
3 0.01738 0.005793 1.75 0.383 

𝑥1*𝑥2 1 0.014708 0.014708 4.45 0.169 

𝑥1*𝑥3 1 0.000041 0.000041 0.01 0.921 

𝑥2*𝑥3 1 0.002485 0.002485 0.75 0.477 

3-Way 

Interactions 
1 0.001592 0.001592 0.48 0.559 

𝑥1*𝑥2*𝑥3 1 0.001592 0.001592 0.48 0.559 

Error 2 0.006605 0.003303   

Total 9 0.088845    

 

Due to the suggested methods for using the model 

separately, the analysis is resistant to the selection of the 

importance values for the parameter values. The analyst 

can also develop the adaptive model and execute 

subsequent iterations of the methodology, if desired. The 

analyst could then assess how sensitive the suggested 

strategy is to the choice of the adaptive constrained 

response surface optimization model. The regression 

coefficients for forming the ACRSOM (Eq. (5)) at this 

stage are shown in Table III at a 90% confidence interval, 

and the objective function is given below: 

𝑌𝑀  ̂  = 7.69-88.9𝑥1-0.00338𝑥2 + 0.000007𝑥3 + 0.0401𝑥1 × 𝑥2 

where the feasible ranges of all parameters are 0.03 ≤ 𝑥1 ≤ 

0.12; 750 ≤ 𝑥2 ≤ 3,000 and 5,000 ≤ 𝑥3 ≤ 20,000. 

TABLE III. ESTIMATED REGRESSION COEFFICIENTS AND THEIR 

PARTIAL STATISTICAL TEST FOR THE SECOND SCENARIO 

Term Coefficient T-Value P-Value 

Constant 7.69 2.25 0.074 

𝑥1 −88.9 −2.32 0.068 

𝑥2 −0.00338 −2.36 0.065 

𝑥3 0.000007 2.24 0.076 

𝑥1*𝑥2 0.0401 2.49 0.055 

The above model can be used to establish the preferred 

level for the process, as shown in Table IV, based on the 

results of the pilot experiment in the second scenario (S2). 

To assess the relationships between the three process 

parameters and the transformed response of the defect 

proportion percentage, ACRSOM was used. Sixteen 

experiments were run in a random order. For each design 

point, Table IV displays the outcomes of the two level 

factorial experimental plans. 
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TABLE IV.  PARAMETERS AND FEASIBLE PROCESS PARAMETERS 

LEVELS INCLUDING THE SECOND SCENARIO 

Process Parameter S2 
Level 

Unit 
1 2 

Feed 0.08 0.08 0.1 mm/rev 
Spindle Speed 2,500 2,300 2,500 rev/sec 

Tool Life 20,000 10,000 20,000 pieces 

Minitab was used to approximate and evaluate the full 

regression coefficients, as well as their statistical 

significance. The two types of numerical results are the 

mean and standard deviation of transformed responses. 

Both sets of data were subjected to analysis of variance 

(ANOVA) in order to fit a constrained response surface 

optimization model using the least squares method and 

assess the fit's quality. 

On the mean response, at the 95% confidence level, F-

Statistic = 5.84, the P-value less than 0.05 explicitly stated 

that the fitted model with main and interaction effects has 

a high significance and is reliable in predicting the mean 

of transformed responses (Fig. 5). Furthermore, according 

to the computed lower the transformed target of the 

percentage of the defect proportion and the maximum 

deviation (∆) calculated from the mean of the transformed 

responses are both set at 0.2255 and 0.1228. F-Statistic 

level, the parameter of tool life was found to be significant 

at the 85% confidence level (Table V).  

The fitted regression model used to predict the mean of 

transformed responses is depicted below along with the 

statistics in Table VI. The residuals appear to fit the 

assumptions of normality, independence, and variance 

stability (Fig. 6). The transformed target of the percentage 

of the defect proportion and the maximum deviation (∆) 

calculated from the mean of transformed responses are 

both set at 0.2255 and 0.1228. 

𝑌𝑀 ̂ = 8.42−100.3 𝑥1−0.00365 𝑥2+ 0.000004𝑥3 + 0.0446𝑥1 × 𝑥2 

TABLE V. ANOVA TABLE FOR DETERMINING THE SIGNIFICANT 

PARAMETERS INCLUDING THEIR INTERACTIONS ON MEAN FOR THE 

THIRD SCENARIO 

Source of Variation DF SS MS F-Value P-Value 

Model 7 0.10816 0.015451 5.84 0.016 

Linear 3 0.081483 0.027161 10.26 0.006 

𝑥1 1 0.066338 0.066338 25.07 0.002 

𝑥2 1 0.020137 0.020137 7.61 0.028 

𝑥3 1 0.007362 0.007362 2.78 0.139 

2-Way Interactions 3 0.031623 0.010541 3.98 0.06 

𝑥1*𝑥2 1 0.028797 0.028797 10.88 0.013 

𝑥1*𝑥3 1 0.000348 0.000348 0.13 0.727 

𝑥2*𝑥3 1 0.002715 0.002715 1.03 0.345 

3-Way Interactions 1 0.000348 0.000348 0.13 0.727 

𝑥1*𝑥2*𝑥3 1 0.000348 0.000348 0.13 0.727 

Error 7 0.018525 0.002646   

Total 14 0.126685    

 

Figure 5. Normal probability plot of effects on the mean response of 

transformed defect proportion percentage 

 

Figure 6. Residual analysis based on the mean response of transformed 
defect proportion percentage 

TABLE VI. ESTIMATED REGRESSION COEFFICIENTS ON MEAN AND 

THEIR PARTIAL STATISTICAL TEST FOR THE THIRD SCENARIO 

Term Coefficient T-Value P-Value 

Constant 8.42 3.18 0.0099 

𝑥1 −100.3 −3.4 0.0068 

𝑥2 −0.00365 −3.29 0.0081 

𝑥3 0.000004 1.81 0.0996 

𝑥1*𝑥2 0.0446 3.62 0.0047 

 

With the additional experiments, the fitted model with 

main and interaction effects has high significance and is 

reliable in predicting the standard deviation of transformed 

responses at the 75% confidence level, F-Statistic = 4.21, 

with a P-value less than 0.25. The regression model that 

was fitted to predict the mean of transformed responses is 

shown below. 

𝑌𝑆𝐷  ̂  = −0.831 −3.04𝑥1+ 0.000485𝑥2+ 0.000075𝑥3 

+0.000180𝑥1×𝑥3 - 0.0000004 𝑥2 × 𝑥3 

ACRSOM numerical optimization was used to predict 

optimal CNCMP conditions. The optimal conditions for 

obtaining the lowest value of transformed response of the 

percentage of defect proportion are as follows: 0.08 feed 

rat; 2,300 spindle speed and 10,000 tool life. Experiments 

were also carried out to validate the predicted model’s 
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accuracy, and the experiment was carried out with three 

replicates at the optimal conditions chosen. 

The difference (D) between predicted and observed 

error values was less than 1% transformed response of 

defect proportion, indicating that the regression model was 

adequate. According to these statistical tests of actual data 

(Fig. 7), the third scenario (S3) is suitable for 

implementing its new operating condition, with a P-value 

of 0.036. The Fisher's mean comparison test, on the other 

hand, revealed that neither scenario 2 nor 3 were 

statistically significant. 

 

Figure 7. Box-Whisker Plot for the percentage of actual defect 
proportion for three scenarios  

V.  DISCUSSIONS AND CONCLUSIONS 

In this paper, the parameters of a half-round drill blade 

for the CNC machining process that can minimize the 

defect proportion of brass unions were investigated. The 

feed rate, speed, and tool life input parameters, as well as 

their experimental settings, were chosen using the 

literature and the CNC machine operator's expertise. The 

most commonly used experiment via the two level 

factorial designed plans was employed in the development 

of an adaptive constrained response surface optimization 

model (ACRSOM). The arcsine transformation was also 

used in this model, which is useful for stabilizing variances 

and normalizing proportional data.  

The ACRSOM was divided into two phases. When there 

was an unreplicated designed plan, the CRSOM's goal was 

to move quickly toward the optimum. When the replicated 

designed plan was obtained, the model searched for the 

operating condition with the lowest standard deviation 

level of proportion responses. The best percentage of 

defects value was 0.0610 at 0.08 feed rate; 2,300 spindle 

speed and 10,000 tool life. This result was better than the 

percentage of defects obtained from the conventional and 

previous phases of the ACRSOM, which were 0.3371 and 

0.1057, respectively. In comparison to the conventional 

method, it thus increased the viability of the proposed 

method as a powerful technique for robust design. 

More research could be conducted to compare different 

response transformations for reducing variance and 

normalizing proportional or percentage data. By 

comparing the results of other transformation methods to 

the results of linear regression on untransformed data, 

changes in residual plots, changes in the P-value, and 

changes in the significance determination can be used to 

determine how well the residuals adhere to the 

assumptions of normality, homogeneity, and 

independence. Future research on the economics of turning, 

milling, and other machining operations will almost 

certainly concentrate on metaheuristics and evolutionary 

operations to determine process parameters [17–20]. 
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