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Abstract—This paper provides an approach based on the 

genetic algorithm for the dimensional synthesis of a six-bar 

mechanism for a shaper machine. The main purpose of the 

optimization algorithm is to maintain the velocity of the 

mechanism’s slider constant within a specified range of the 

rotational motion of the input link. Therefore, first, an 

objective function is defined for the slider. Then, the velocity 

function of the slider is calculated using a set of 

mathematical relationships and the mechanism’s kinematic 

constraints. In order for this function to reach the objective 

function, a cost function is defined. This cost function is 

minimized, and the output approaches the objective function 

by selecting the appropriate parameters for the mechanism. 

To this end, four accuracy points are selected within a 

specific range of motion of the input link. Subsequently, the 

distances between the points on the velocity function of the 

slider and the predetermined function are calculated at these 

four points. The goal is to minimize these four distances. 

Hence, a cost function is defined in the form of the squares 

of the sums of these distances and is minimized using the 

genetic algorithm. Therefore, this cost function is used to 

minimize the error between the desired points and the points 

generated by the mechanism and can be affected by factors 

such as the lengths of the links, the transmission angles, the 

Grashof condition, and the mechanism type. In the genetic 

algorithm, the population, crossover, or mutation 

determines the accuracy of the results. The purpose of this 

research is to find the optimal dimensions of the links in 

order to minimize the error between the ideal and actual 

slider velocity functions. Ultimately, a numerical example is 

provided where the optimal dimensions are suggested by the 

optimization algorithm.  

Keywords—Shaper, mechanism, optimization, genetic 

algorithm 

I. INTRODUCTION 

Machining is one of the most useful processes for 

manufacturing industrial parts. The quality of a piece 

undergoing machining procedures is measured in terms of 

surface roughness. Surface quality is, in turn, determined 

by the machining parameters and the geometrical 
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properties of the tool. Various mechanisms are used to 

perform machining. The shaper mechanism is one of the 

most common mechanisms incorporating a mechanical 

linkage. It is also one of the most useful machines for 

manufacturing many metal parts. One reason for the 

widespread use of this machine is its ability to perform 

various tasks at different adjustable speeds. This 

mechanism undergoes a linear reciprocating movement, 

which carries a blade cutting the workpiece. In the shaper 

mechanism, a rotational motion is converted to a 

reciprocating one, in which the forward stroke takes 

longer than the return stroke. 

The optimization of bar mechanisms designed for 

shapers is one of the issues considered by their designers 

in order to achieve the best results under different 

circumstances. In this regard, graphical and analytical 

methods are traditionally used for the dimensional 

synthesis. However, such methods are relatively limited 

due to their low precision and, hence, cannot be used to 

design diverse mechanisms, especially those with large 

numbers of accuracy points and high synthesis complexity. 

In order to address these issues, optimization methods 

have been increasingly used in recent years for the 

dimensional synthesis of mechanisms, especially for path 

generation [1]. In path generation, synthesis could be 

carried out using a specific number of accuracy points to 

be tracked by the mechanism. Therefore, an optimization 

method shall be used for determining the mechanism’s 

geometry, such as lengths, angles, and coordinates, in 

order to minimize the error between the desired and 

generated paths. It is important to note that a number of 

constraints must be observed during the optimization of 

the mechanism, such as Grashof's condition, the sequence 

of the input angles, and the ranges of the design variables. 

Genetic algorithms have been successfully used for the 

optimal synthesis of various mechanisms due to their high 

probability of finding the global optimum and their 

effectiveness [2, 3]. Nevertheless, all the optimization 

approaches presented in the mentioned references are 
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based on a single objective function, i.e., the position error 

between the actual and desired points.  

The design objective introduced by Liu et al. (2022) [4] 

is to improve the dynamic performance of the mechanism 

through optimal link design instead of improving the 

generation accuracy or changing the motion strategy of 

the mechanism. Specifically, the mechanism has been 

designed for generating a specific four-bar equation of 

motion considering the backlash in the joints and the 

dynamic performance. The influence of certain 

mechanisms’ geometry on the energy consumption has 

also been investigated by Carabin et al. (2017) [5] and 

Sheppard et al. (2019) [6]. For example, Oosterwyck et al. 

in [7] and [8] have proposed mechanism models that could 

replace the prototypes so that the overall costs of the 

evaluation process would be reduced substantially.  In 

addition, a new method for designing a slider-crank 

mechanism based on differential objective functions has 

been presented by Jong et al. (2016) [9]. Satisfying the 

constraints defined for a mechanism during design is very 

important. Yao et al. (2022) [10] address this issue by 

proposing a novel method for satisfying mechanism 

constraints during the design phase. The constraint can 

also be put on the output trajectory which has been 

discussed by Jaiswal et al. in [11]. 

Li et al. (2012) [12] used a MATLAB toolbox in order 

to solve optimal mechanical design problems and 

proposed an optimal design for a four-bar linkage using 

mathematical modeling and analysis. The design and 

optimization of the four-bar mechanism were realized 

through the MATLAB optimization toolbox. The 

dynamic analysis of a parallel kinematic mechanism 

(PKM) was carried out by Liu et al. (2010) [13]. In this 

study, a PKM with four degrees of freedom (DOFs) was 

defined using the Denavit-Hartenberg method, and the 

mechanism's dynamic model was developed via the 

Newton-Euler approach. The computation process was 

also demonstrated, and the dynamic model was simulated 

using MATLAB. 

Function generation has been carried out by Hitesh       

et al. (2019) [14] for two loops in a four-bar planar 

mechanism. For high flexibility and precision in function 

generation, two connected loops of the four-bar 

mechanism were considered, where the output of the first 

loop is the input of the second, and the output of the 

second loop is the final desired output. Moreover, the 

function generation error is reduced to two steps. 

Subsequently, equations have been used to construct 

mathematical models for both loops. Ultimately, the 

authors concluded that the double-loop four-bar 

mechanism can generate functions in two steps compared 

to single-loop four-bar mechanisms, making it possible to 

generate the optimal function. A novel approach has been 

proposed by Neider et al. (2019) [15] for the optimization 

analysis of path-generator links. Optimization has also 

been performed using mathematical formulation. In this 

research, natural coordinates were combined with a 

Hermitian analysis to solve the kinematic position of the 

four-bar mechanism and were used to define an objective 

function. Also, a training-based optimization algorithm 

has been implemented to test the robustness of the 

proposed formulation. Moreover, the authors concluded 

that it is possible to extend this method to other types of 

mechanisms. 

The approach presented in this paper uses the genetic 

algorithm for synthesizing the mechanism. Genetic 

algorithms were first introduced by Holland [16] and then 

implemented widely and successfully for various 

optimization problems. Fang [17] and Kunjur [18] 

presented mechanism synthesis results obtained from 

evolutionary techniques. In these methods, a starting 

population is defined and improved through objective 

function approximation using natural selection 

mechanisms and genetic rules. The main benefits of these 

methods include their simple implementation and low 

computational costs. Three types of analytical synthesis 

were defined by Sandor et al. (1984) [19]: function 

generation synthesis, motion generation synthesis, and 

path synthesis. This paper is based on the last type 

although the method can be applied to any one of the types. 

In the present paper, the genetic algorithm is used to 

optimize the geometry of a six-bar shaper mechanism, 

which is a continuous model, in such a way that the speed 

function of the slider is almost constant within a specific 

interval of rotational motion of the input link, i.e., it 

follows a predetermined function with a gentle slope. To 

this end, four accuracy points are selected within a certain 

range of the input link. Subsequently, the distances 

between the points on the velocity function of the slider 

and the predetermined function are calculated at these four 

points. The goal is to minimize these four distances. 

Hence, a cost function is defined in the form of the squares 

of the sums of these distances and is minimized using the 

genetic algorithm. The significance of this research lies in 

the fact that, as far as the authors know, no study has ever 

optimized the geometry of a shaper mechanism to 

maintain the slider speed constant for a given rotational 

interval of the input link. Hence, the present study can be 

considered an innovation in this field. Moreover, the 

results of this research can be used to define other similar 

functions in the future and extend the velocity function of 

the slider to them.  

II. MATHEMATICAL MODEL  

The model in the present paper is a 1-DOF six-bar 

mechanism used in shaper machines as presented in Fig. 

1. The slider, i.e., the shaper blade (slider), moves back 

and forth as input link (link with the length b) rotates. As 

seen in this figure, a is the distance between the supports 

of the mechanism, b is the length of the input link, c 

denotes the length of the follower link, d represents the 

length of the link guiding the blade, θ is the angle of the 

input link relative to the horizon, α expresses the angle of 

the follower link relative to the horizon, and β represents 
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the angle of the link guiding the blade relative to the 

horizon.  

In order to optimize this mechanism so that the slider's 

velocity follows a desired function, the function 

representing this speed must be specified first. Hence, the 

kinematics of the mechanism must be determined. 

 
Figure 1. Schematic of the six-bar shaper mechanism 

The slider’s equation of motion, expressed by X, is 

defined by Eq. (1) based on the geometry of the 

mechanism:  

 

(1) 𝑋 = 𝑐𝑐𝑜𝑠𝛼 + 𝑑𝑐𝑜𝑠𝛽 

where 𝑐𝑜𝑠𝛼 and 𝑐𝑜𝑠𝛽 are defined by Eq. (2) and Eq. (3), 

respectively:  

(2) 𝑐𝑜𝑠𝛼 =
𝑏𝑐𝑜𝑠𝜃

𝑎2 + 2𝑎𝑏𝑠𝑖𝑛𝜃 + 𝑏2
 

(3) 𝑐𝑜𝑠𝛽 = √1 − (
𝑐

𝑑
√1 −

𝑏2𝑐𝑜𝑠2𝜃

𝑎2 + 2𝑎𝑏𝑠𝑖𝑛𝜃 + 𝑏2 −
ℎ

𝑑
)2 

Furthermore, Eq. (4) and Eq. (5) can be used to 

determine 𝑠𝑖𝑛𝛼 and sinβ:  

(4) 
𝑠𝑖𝑛𝛼 = √1 −

𝑏2𝑐𝑜𝑠2𝜃

𝑎2 + 2𝑎𝑏𝑠𝑖𝑛𝜃 + 𝑏2
 

(5) 𝑠𝑖𝑛𝛽 =
𝑐

𝑑
√1 −

𝑏2𝑐𝑜𝑠2𝜃

𝑎2 + 2𝑎𝑏𝑠𝑖𝑛𝜃 + 𝑏2
−

ℎ

𝑑
 

By substituting Eq. (2) to Eq. (5) in Eq. (1), Eq. (6) is 

obtained:  

(6) 𝑋 =
𝑐𝑏𝑐𝑜𝑠𝜃

𝑎2 + 2𝑎𝑏𝑠𝑖𝑛𝜃 + 𝑏2
+ 𝑑√1 − (

𝑐

𝑑
√1 −

𝑏2𝑐𝑜𝑠2𝜃

𝑎2 + 2𝑎𝑏𝑠𝑖𝑛𝜃 + 𝑏2
−

ℎ

𝑑
)2 

If the two sides of Eq. (6) are differentiated with respect 

to time, the equation representing the speed of the slider 

is determined as follows:  

(7) 𝑉 =

2𝑎𝑏3𝑐𝜔cos3(𝜃) + 2𝑏2𝑐𝜔 cos(𝜃) sin(𝜃)
#1

(#2)

2√(1 −
𝑏2 cos2(𝜃)

#1
)(1 − #22)

−
𝑎𝑏2𝑐𝜔 cos2(𝜃)

(#1)
3
2

−
𝑏𝑐𝜔 sin(𝜃)

(#1)
1
2

− 

where ω =
𝑑𝜃

𝑑𝑡
= �̇�  is the angular input speed of the 

mechanism, and the other parameters are as follows: 

#1 = 𝑎2 + 2𝑎𝑏 𝑠𝑖𝑛(𝜃) + 𝑏2 

#2 =
ℎ

𝑑
−

𝑐

𝑑
√1 −

𝑏2 cos2(𝜃)

𝑎2 + 2𝑎𝑏 sin(𝜃) + 𝑏2
 

The equations are usually made dimensionless in order 

to reduce the number of iterations in the numerical 

solution. As a result, Eq. (7) is made dimensionless in the 

subsequent step by dividing its two sides by bω . The 

dimensionless speed (V∗) is expressed by Eq. (8):  

(8) 
𝑉∗ =

(
2𝑎𝑏2𝑐 cos3(𝜃) + 2𝑏𝑐 cos(𝜃) sin(𝜃)

𝑎2 + 2𝑎𝑏 sin(𝜃) + 𝑏2 )

(
ℎ
𝑑

−
𝑐
𝑑

√1 −
𝑏2 cos2(𝜃)

𝑎2 + 2𝑎𝑏 sin(𝜃) + 𝑏2)

2√1 −
𝑏2 cos2(𝜃)

𝑎2 + 2𝑎𝑏 sin(𝜃) + 𝑏2 (1 − (
ℎ
𝑑

−
𝑐
𝑑

√1 −
𝑏2 cos2(𝜃)

𝑎2 + 2𝑎𝑏 sin(𝜃) + 𝑏2)
2)

1
2

−
𝑎𝑏𝑐 𝑐𝑜𝑠(𝜃 + 𝜑)2

(𝑎2 + 2𝑎𝑏 𝑠𝑖𝑛(𝜃) + 𝑏2)
3
2

−
𝑐𝑠𝑖𝑛(𝜃)

(𝑎2 + 2𝑎𝑏 sin(𝜃) + 𝑏2)
1
2

 

If the dimensionless parameters 𝐾1, 𝐾2, 𝐾3, and 𝐾4 are 

defined as follows:  
(9) 𝐾1 =

𝑎

𝑏
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𝐾2 =
𝑐

𝑏
 

𝐾3 =
ℎ

𝑑
 

𝐾4 =
𝑐

𝑑
 

Eq. (8) becomes Eq. (10):  

(10) 

𝑉∗ =

(
2𝐾1𝐾2 cos3(𝜃) + 2𝐾2 cos(𝜃) sin(𝜃)

𝐾1
2 + 2𝐾1 sin(𝜃) + 1

)(𝐾3 − 𝐾4√1 −
cos2(𝜃)

𝐾1
2 + 2𝐾1 sin(𝜃) + 1

)

2√1 −
cos2(𝜃)

𝐾1
2 + 2𝐾1 sin(𝜃) + 1

(1 − (𝐾3 − 𝐾4√1 −
cos2(𝜃)

𝐾1
2 + 2𝐾1 sin(𝜃) + 1

1
2

)2)

−
𝐾1𝐾2 cos2(𝜃)

(𝐾1
2 + 2𝐾1 sin(𝜃) + 1)

3
2

−
𝐾2sin (𝜃)

(𝐾1
2 + 2𝐾1 sin(𝜃) + 1)

1
2

 

Eq. (10) represents the dimensionless speed of the 

slider, which can be considered as Eq. (11):  

(11) 𝑉∗ = 𝑓(𝐾1, 𝐾2, 𝐾3, 𝐾4, 𝜃) = 𝑓(�⃗⃗⃗� , 𝜃) 

where �⃗⃗⃗�  is the vector of the parameters that must be 

optimized.  

(12) �⃗⃗⃗� = [

𝐾1

𝐾2

𝐾3

𝐾4

] 

A. Objective Function  

It must be noted that, in the present shaper mechanism, 

the objective is to have a specified and almost constant 

blade speed function for a specific motion interval of the 

input link. This profile should be as linear as possible 

since the goal is to keep it constant; therefore, the ideal 

function is defined as a linear function. To this end, a 

linear function termed 𝑓𝑖𝑑𝑒𝑎𝑙  with a slope close to zero has 

been considered as the objective function. The purpose of 

the optimization is to linearize the function 𝑉∗  in the 

interval 0 ≪ θ ≤ 4  of the input link, such that the 

function f  becomes close to the function fideal  by 

satisfying the problem’s constraints in this interval. The 

function fideal is defined using Eq. (13): 

  

(13) 𝑓𝑖𝑑𝑒𝑎𝑙(𝜃) = 0.001𝜃 

B. Cost Function  

In order for the function f to be close to the function 

𝑓𝑖𝑑𝑒𝑎𝑙  in the specified interval θ, four accuracy points are 

selected in the interval 0 ≪ θ ≤ 4  and named 𝜃𝑖  , 𝑖 =
1,2,3,4. The difference between the dimensionless speed 

𝑓(𝜃𝑖)  and the function 𝑓𝑖𝑑𝑒𝑎𝑙(𝜃𝑖)  at these points is 

calculated for a given �⃗⃗⃗�  (a specific geometry).  Since 

these differences must be minimal, a cost function is 

defined that must be minimized by the optimization 

algorithms. The cost function is the square root of the sum 

of the squares of these differences. In other words, the cost 

function can be expressed by Eq. (14):  

(14) 
𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  √∑(𝑓(�⃗⃗⃗� , 𝜃𝑖) − 𝑓𝑖𝑑𝑒𝑎𝑙(𝜃𝑖) )

2

5

𝑖=1

 

C. Constraints  

In order to ensure the existence of the optimal 

mechanism, certain constraints are defined. These 

constraints expressed by Eq. (15) and Eq. (16), govern the 

problem:  

(15) 𝑎 > 𝑏 

(16) 𝑎 + 𝑏 < 𝑐 

It is worth noting that the above constraints were 

defined according to the Grashof condition. This 

condition ensures that at least one of the links can perform 

a full revolution. Using the dimensionless coefficients 𝐾1 

and 𝐾2, the above equations are rewritten as follows:  

(17) 
𝐾1 − 1 > 0 

(18) 𝐾1 − 𝐾2 < 0 

The other constraints have been defined as in Table I .  

TABLE I. THE RANGE OF THE DESIGN PARAMETERS 

The range of the design parameters 

𝟏 ≤ 𝑲(𝟏) = 𝑲𝟏 ≤ 𝟏. 𝟓 

𝟏 ≤ 𝑲(𝟐) = 𝑲𝟐 ≤ 𝟏𝟎 

𝟏 ≤ 𝑲(𝟑) = 𝑲𝟑 ≤ 𝟒 

𝟏 ≤ 𝑲(𝟒) = 𝑲𝟒 ≤ 𝟏𝟓 

III. OPTIMIZATION  

The optimization problem of this paper is defined by 

Eq. (19):  

(19) 

min 𝐹( �⃗⃗⃗� , 𝜃𝑖)  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑔𝑗(�⃗⃗⃗� ) ≤ 0  ,

j = 1, 2, …10 
 

in which 𝐹 is the cost function defined according to Eq. 

(14), �⃗⃗⃗�  represents the dimensionless parameters (𝐾𝑖), and 

g is the matrix of the problem’s constraints. �⃗⃗⃗�  must be 

selected in such a way that the cost function defined for 

the four accuracy points is minimized while the problem 

constraints are observed.  

The optimization is carried out using the genetic 

algorithm, which is an evolutionary optimization method. 

Since the genetic algorithm is meta-heuristic, it may not 

produce an accurate and rational output via a single 
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solution, and the graph plotted for the blade speed may not 

be acceptable. Thus, at this step, an acceptance criterion 

may be defined after the plot of the speed with the 

obtained coefficients is viewed. In this work, the 

acceptance criterion is defined to be the difference 

between Voptimized
∗  and 𝑓𝑖𝑑𝑒𝑎𝑙  corresponding to the 

interval 0 ≪ θ ≤ 4, which must not exceed 10%. Hence, 

if the acceptance criterion fails, the problem is solved once 

more, the optimal coefficients are obtained again, and the 

speed graph is redrawn with the newly obtained 

coefficients. This will be repeated until the plotted graph 

is acceptable and the acceptance criterion is satisfied. In 

this case, the obtained coefficients represent the optimal 

solution to the problem.  

The procedure of evolutionary methods for 

optimization problems begins with generating the initial 

population. For the synthesis of mechanisms, the initial 

population consists of a set of design variables the values 

of which are randomly generated in the search space. 

Therefore, in the present problem, the algorithm begins by 

selecting several sets of values for �⃗⃗⃗� , which is the initial 

population. Each individual (chromosome) in the 

population is a possible solution to the problem and is 

formed by the parameters (genes) that determine the 

design variables of the problem.  

Genes can be introduced into the problem in a variety 

of ways. In the first approach, defined by Holland [16] , 

they are in the form of binary chains. Hence, each gene 𝑦𝑖  

is expressed using a binary code with a size of P, which is 

limited to an interval defined with integer or real values. 

Another method for defining genes is the use of real 

numbers, which is the method of choice in this paper. In 

this method, all the genes are placed in a vector that 

represents the chromosome.  

 

(20) 𝑌 = [𝑦1 𝑦2 … 𝑦𝑛 ]  ∀𝑦 ∈ 𝑅 
 

In the next step, the initial population must be 

converted to one that provides a better solution. This can 

be done via natural selection, reproduction, mutation, or 

other genetic operators. All three processes are used in this 

paper. Hence, a brief explanation is provided about each 

one.  

A. Natural Selection  

In this process, two individuals (solutions) are 

randomly selected from the population in order to form a 

couple for reproduction. Selection can be based on 

different probabilistic distributions, such as uniform 

distribution or random selection from the population. A 

weight is assigned to each member depending on its 

fitness, such that the most fitted individual is the most 

likely to be selected. 

In this paper, the best individual (solution) and two 

individuals have been randomly selected with a uniform 

distribution for reproduction, and one individual from the 

new generation, named s, which is a differential evolution 

[20], is formed based on  Eq. (21):  

 
(21)

 
𝑦𝑖 : 𝑖 ∈ [1, 𝑃] 

s = 𝑦𝑏𝑒𝑠𝑡 + 𝑊(𝑦𝑟1 − 𝑦𝑟2) 
  

where 𝑦𝑏𝑒𝑠𝑡  is the best individual from the population P, 

𝑦𝑟1 and 𝑦𝑟2 are two individuals randomly selected from 

the population, and W represents a real number that 

controls the disturbance of the best individual.  

B. Reproduction  

In the next step, S is crossed with the i-th individual 

from the current population to produce the i-th individual 

from the next population. This operator is called the 

crossover operator.  

Reproduction occurs in two ways. As shown in Fig. 2, 

in the first case, parents 𝑦𝑖  and S produce their descendent 

( 𝑦𝑖
𝑁 ) via a piecewise multi-point crossover [21]: the 

crossover points (𝑗, 𝑗 + 𝑘) are selected randomly from the 

parent genes for reproducing the next generation (with a 

uniform probability distribution). This group of genes 

crossed from two parents can be placed together.  

In the second case, shown in Fig. 3, discrete multi-point 

crossover can be used to produce 𝑦𝑖
𝑁. Parent 𝑦𝑖  produces 

its descendent using a set of N genes randomly selected 

from the entire corresponding chromosome. Parent S 

provides the rest of the genes. If Child 𝑦𝑖
𝑁 is better than its 

previous generation, it will replace 𝑦𝑖 . Otherwise, 𝑦𝑖  will 

remain in the population, and 𝑦𝑖
𝑁 will be removed. As a 

result, the population will neither decrease nor increase.  

 
Figure 2. Piecewise multi-point crossover for reproduction 

 
Figure 3. Discrete multi-point crossover for reproduction 
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It should be noted that multi point crossover is a 

generalized one-point crossover wherein new off-springs 

are born by swapping the alternating segments.  

C. Mutation  

The mutation operator refers to a random change in a 

gene during reproduction. Mutation is defined as follows: 

when Gene 𝑦𝑖  mutates, the operator randomly selects a 

value in the set of real numbers (𝑦𝑖 , 𝑦𝑖 ± 𝑟𝑎𝑛𝑔𝑒) and adds 

it to or subtracts it from 𝑦𝑖 .  

IV. NUMERICAL EXAMPLE  

To evaluate the performance of the optimization 

process for a mechanism using the genetic algorithm, the 

dimensionless parameters Ki are considered according to 

Table II.  

TABLE II. THE RANGE OF THE DESIGN PARAMETERS 

The Dimensionless Parameters Ki 

4 3 2 1 i 

1.3 1.3 4 3 𝑲𝒊 

With these values, the dimensionless speed curve of the 

mechanism in (10) will correspond to the range 0 ≪ θ ≤
2π, and the target speed curve (fideal) will be as shown in 

Fig. 4.  

 
Figure 4. Graph of the dimensionless speed of the shaper mechanism 

Now four accuracy points in the interval 0 ≪ θ ≤ 4 are 

selected in the form of a vector Ѳ = [1 2 3 4]. The cost 

function is formed by substituting these four accuracy 

points into (14). Using the genetic algorithm to minimize 

the defined cost function, the four unknowns 

(dimensionless coefficients Ki ) are determined. The 

variation of the cost function with relation to the iteration 

number has been demonstrated in Fig. 5. 

The parameters for the Genetic Algorithm are listed in 

Table III. 

TABLE III. THE PARAMETERS FOR THE GENETIC ALGORITHM 

Mutation 

probability 

Crossover 

probability 

Initial 

Population 

0.001 0.6 𝟏𝟎𝟎 

 

 

Figure 5. The variation of the cost function with relation to the iteration 
number 

 
Figure 6. Graph of the dimensionless speed of the mechanism before 

and after optimization 

As could be seen from this figure, the cost function first 

increases but as the number of iterations passes 4000, the 

cost function starts to decrease and it finally converges to 

the acceptance criteria. In addition, Table IV also 

demonstrates that how the acceptance criterion converges 

to its acceptance level as the number of iterations 

increases in the Genetic Algorithm. As could be inferred 

from this table, it could be concluded that after the 

iteration No. 7000, the acceptance criterion approaches to 

its required value and for the iteration No. 8000, it has 

already been reached and the optimization algorithm stops. 

TABLE IV. CONVERGENCE OF THE ACCEPTANCE CRITERION TO ITS 

ACCEPTANCE LEVEL AS THE NUMBER OF ITERATIONS INCREASES 

7000 6000 5000 4000 3000 2000 1000 No. Iteration 

11 12 23 25 27 21 17 Acceptance 

Criterion (%) 

 

Finally, the graph of the slider’s speed is plotted with 

the coefficients calculated for minimizing the objective 

function. In this study, the graph of the dimensionless 

speed function ( Voptimized
∗ ) corresponds to K1 = 1.1,

K2 = 2.2, K3 = 3.17, K4 = 11.04 as shown in Fig. 6.  

According to the speed plot with the obtained 

coefficients, the acceptance criterion has not yet been met. 

Hence, the problem is solved again, and the optimal 

coefficients are obtained again until the acceptance 

criterion is satisfied. Once this happens, the obtained 

coefficients will represent the optimal solution to the 

problem. In the end, one of the several values obtained in 
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different solutions is selected as the optimal solution to 

the problem.  

One of the graphs meeting the acceptance criterion is 

shown in Fig. 7. For this chart, the dimensions are as 

follows: K1 = 1.23, K2 = 2.65, K3 = 3.98, K4 = 12.05. 

 
Figure 7. Dimensionless speed graph satisfying the acceptance criterion 

If one of the dimensions 𝑎, 𝑏, 𝑐, 𝑑, ℎ is known, the other 

parameters can be determined using these coefficients, 

which represent the dimensional ratios between the links 

in the mechanism, and the resulting mechanism will 

exhibit optimal performance in terms of having an almost 

linear slider speed function in the interval 0 ≪ θ ≤ 4.  

The six-bar shaper mechanism corresponding to the 

generated optimal solution has been sketched in Fig. 8 

using simple lines with correct length ratios of optimal 

design results. 

 

Figure 8. The six-bar shaper mechanism corresponding to one of the 
generated optimal solutions 

V. CONCLUSION  

The optimization of mechanisms designed for shapers 

is one of the issues considered by their designers so that 

the best results can be achieved under any given set of 

circumstances. As mentioned previously, different 

methods have been used in various papers to optimize 

shaper mechanisms, including graphical and analytical 

methods for the dimensional synthesis of mechanism. 

In this paper, a genetic algorithm was used to optimize 

and synthesize a six-bar shaper mechanism such that the 

slider moves at a nearly constant dimensionless speed for 

a specified interval of the input link’s angle. The error 

between the speed function generated by the mechanism 

and the objective function was minimized by selecting 

four accuracy points. The distances between the 

corresponding points on the speed function of the slider 

and the objective function were calculated at these four 

accuracy points, and a suitable cost function was defined 

for the optimization. Moreover, the optimization was 

carried out while satisfying different geometric 

constraints. A numerical example was also considered as 

a case study. The results of this example generated various 

configurations for the mechanism such that the desired 

speed function was formed. The optimization algorithm 

was observed to converge to the solution rapidly, and its 

error was within the specified range.  
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